
Raster Vision Documentation
Release 0.8.0

Azavea

Apr 12, 2019

Contents

1 Why Raster Vision? 5
1.1 Why do we need yet another deep learning library? . 5
1.2 What are the benefits of Raster Vision? . 5
1.3 Who is Raster Vision for? . 6

2 Quickstart 7
2.1 The Data . 8
2.2 Creating an ExperimentSet . 8
2.3 Running an experiment . 9
2.4 Seeing Results . 10
2.5 Predict Packages . 11
2.6 Next Steps . 13

3 Setup 15
3.1 Installing Raster Vision . 15
3.2 Raster Vision Configuration . 16
3.3 Docker Containers . 17
3.4 Running on a machine with GPUs . 17
3.5 Setting up AWS Batch . 18

4 Experiment Configuration 19
4.1 Experiment Set . 19
4.2 ExperimentConfig . 19
4.3 Task . 20
4.4 Backend . 22
4.5 Dataset . 23
4.6 Scene . 23
4.7 Analyzers . 26
4.8 Evaluators . 26
4.9 Default Providers . 26

5 Commands 29
5.1 Command Types . 29

6 Running Experiments 31
6.1 ExperimentRunners . 31
6.2 Running locally . 32

i

6.3 Running on AWS Batch . 32

7 Making Predictions (Inference) 33
7.1 How to make predictions with models train by Raster Vision . 33
7.2 Predict Package . 33

8 Command Line Interface 35
8.1 Commands . 35

9 Miscellaneous Topics 39
9.1 FileSystems . 39
9.2 Viewing Tensorboard . 39
9.3 Model Defaults . 39
9.4 Reusing models trained by Raster Vision . 40

10 Codebase Design Patterns 43
10.1 Configuration vs Entity . 43
10.2 Fluent Builder Pattern . 44
10.3 Global Registry . 45

11 Plugins 47
11.1 Creating Plugins . 47
11.2 Registering the Plugin . 48
11.3 Configuring Raster Vision to use your Plugins . 48
11.4 Plugins in remote environments . 48
11.5 Example Plugin . 48

12 QGIS Plugin 49
12.1 Installing . 50
12.2 Load Experiment . 50
12.3 Predict . 53
12.4 Style Profiles . 54
12.5 Configure . 54

13 API Reference 57
13.1 API Reference . 57

Python Module Index 75

ii

Raster Vision Documentation, Release 0.8.0

Raster Vision is an open source framework for Python developers building computer vision models on satellite, aerial,
and other large imagery sets (including oblique drone imagery). It allows for engineers to quickly and repeatably
configure experiments that go through core components of a machine learning workflow: analyzing training data,
creating training chips, training models, creating predictions, evaluating models, and bundling the model files and
configuration for easy deployment.

Raster Vision workflows begin when you have a set of images and training data, optionally with Areas of Interest
(AOIs) that describe where the images are labeled. Raster Vision workflows end with a packaged model and config-
uration that allows you to easily utilize models in various deployment situations. Inside the Raster Vision workflow,
there’s the process of running multiple experiments to find the best model or models to deploy.

The process of running experiments includes executing workflows that perform the following commands:

• ANALYZE: Gather dataset-level statistics and metrics for use in downstream processes.

• CHIP: Create training chips from a variety of image and label sources.

• TRAIN: Train a model using a variety of “backends” such as TensorFlow or Keras.

• PREDICT: Make predictions using trained models on validation and test data.

• EVAL: Derive evaluation metrics such as F1 score, precision and recall against the model’s predictions on
validation datasets.

• BUNDLE: Bundle the trained model into a Predict Package, which can be deployed in batch processes, live
servers, and other workflows.

Experiments are configured using a fluent builder pattern that makes configuration easy to read, reuse and maintain.

tiny_spacenet.py

import rastervision as rv

class TinySpacenetExperimentSet(rv.ExperimentSet):
(continues on next page)

Contents 1

https://rastervision.io

Raster Vision Documentation, Release 0.8.0

(continued from previous page)

def exp_main(self):
base_uri = ('https://s3.amazonaws.com/azavea-research-public-data/'

'raster-vision/examples/spacenet')
train_image_uri = '{}/RGB-PanSharpen_AOI_2_Vegas_img205.tif'.format(base_uri)
train_label_uri = '{}/buildings_AOI_2_Vegas_img205.geojson'.format(base_uri)
val_image_uri = '{}/RGB-PanSharpen_AOI_2_Vegas_img25.tif'.format(base_uri)
val_label_uri = '{}/buildings_AOI_2_Vegas_img25.geojson'.format(base_uri)

task = rv.TaskConfig.builder(rv.OBJECT_DETECTION) \
.with_chip_size(512) \
.with_classes({

'building': (1, 'red')
}) \
.with_chip_options(neg_ratio=1.0,

ioa_thresh=0.8) \
.with_predict_options(merge_thresh=0.1,

score_thresh=0.5) \
.build()

backend = rv.BackendConfig.builder(rv.TF_OBJECT_DETECTION) \
.with_task(task) \
.with_debug(True) \
.with_batch_size(8) \
.with_num_steps(5) \
.with_model_defaults(rv.SSD_MOBILENET_V2_COCO) \
.build()

train_raster_source = rv.RasterSourceConfig.builder(rv.GEOTIFF_SOURCE) \
.with_uri(train_image_uri) \
.with_stats_transformer() \
.build()

train_scene = rv.SceneConfig.builder() \
.with_task(task) \
.with_id('train_scene') \
.with_raster_source(train_raster_source) \
.with_label_source(train_label_uri) \
.build()

val_raster_source = rv.RasterSourceConfig.builder(rv.GEOTIFF_SOURCE) \
.with_uri(val_image_uri) \
.with_stats_transformer() \
.build()

val_scene = rv.SceneConfig.builder() \
.with_task(task) \
.with_id('val_scene') \
.with_raster_source(val_raster_source) \
.with_label_source(val_label_uri) \
.build()

dataset = rv.DatasetConfig.builder() \
.with_train_scene(train_scene) \
.with_validation_scene(val_scene) \
.build()

experiment = rv.ExperimentConfig.builder() \
(continues on next page)

2 Contents

Raster Vision Documentation, Release 0.8.0

(continued from previous page)

.with_id('tiny-spacenet-experiment') \

.with_root_uri('/opt/data/rv') \

.with_task(task) \

.with_backend(backend) \

.with_dataset(dataset) \

.with_stats_analyzer() \

.build()

return experiment

if __name__ == '__main__':
rv.main()

Raster Vision uses a unittest-like method for executing experiments. For instance, if the above was defined in
tiny_spacenet.py, with the proper setup you could run the experiment on AWS Batch by running:

> rastervision run aws_batch -p tiny_spacenet.py

See the Quickstart for a more complete description of using this example.

This part of the documentation guides you through all of the library’s usage patterns.

Contents 3

Raster Vision Documentation, Release 0.8.0

4 Contents

CHAPTER 1

Why Raster Vision?

1.1 Why do we need yet another deep learning library?

Machine learning libraries generally implement the algorithms and other core functionality needed to build models.
The workflow of creating training data in a format that the machine learning library understands, running training in
a highly configurable way, making predictions on validation images and performing evaluations on models is usually
up to the user to figure out. This often results in a bunch of one-off scripts that are assembled per project, and
not engineered to be reusable. Raster Vision is a framework that allows you to state configurations in modifiable and
reusable ways, and keeps track of all the files through each step of the machine learning model building workflow. This
means you can focus on running experiments to see which machine learning techniques apply best to your problems,
and leave the data munging and repeatable workflow processes to Raster Vision.

In addition, the current libraries in the deep learning ecosystem don’t usually work well out of the box with large im-
agery sets, and especially not geospatial imagery (e.g. satellite, aerial, and drone imagery). For example, in traditional
object detection, each image is a small PNG file and contains a few objects. In contrast, when working with satellite
and aerial imagery, each image is a set of very large GeoTIFF files and contains hundreds of objects that are sparsely
distributed. In addition, annotations and predictions are represented in geospatial coordinates using GeoJSON files.

1.2 What are the benefits of Raster Vision?

• Configure Task, Backend, and other components of deep learning ExperimentConfig using a flexible and readable
pattern that sets up all the information needed to run a machine learning workflow.

• Run Commands from the command line that execute locally or on AWS Batch. With AWS Batch, you can
fire off jobs that run through the entire workflow on a GPU spot instance that is created for the workload and
terminates immediately afterwards, saving not only money in EC2 instance hours, but also time usually spent
ssh’ing into machines or babysitting processes.

• Read files from HTTP, S3, the local filesystem, or anywhere with the pluggable FileSystems architecture.

• Make predictions and build inference pipelines using a single file as output of the Raster Vision workflow for
any experiment, which includes the trained model and configuration.

5

Raster Vision Documentation, Release 0.8.0

1.3 Who is Raster Vision for?

Raster Vision is for:

• Developers new to deep learning who want to get spun up on applying deep learning to imagery quickly or
who want to leverage existing deep learning libraries like Tensorflow and Keras for their projects simply.

• People who are already applying deep learning to problems and want to make their processes more robust,
faster and scalable.

• Machine Learning engineers who are developing new deep learning capabilities they want to plug into a
framework that allows them to focus on the hard problems.

• Teams building models collaboratively that are in need of ways to share model configurations and create
repeatable results in a consistent and maintainable way.

6 Chapter 1. Why Raster Vision?

CHAPTER 2

Quickstart

In this Quickstart, we’ll train a semantic segmentation model on SpaceNet data. Don’t get too excited - we’ll only
be training for a very short time on a very small training set! So the model that is created here will be pretty much
worthless. But! These steps will show how Raster Vision experiments are set up and run, so when you are ready to
run against a lot of training data for a longer time on a GPU, you know what you have to do. That’s one of the core
ideas of Raster Vision - the work to get an experiment you created against a tiny test set is simply to point it at more
data, tweak some parameters and run it in a GPU-enabled environment. Also, we’ll show how to make predictions on
the data using a model we’ve already trained on GPUs for some time to show what you can expect to get out Raster
Vision from a basic setup.

For the Quickstart we are going to be using one of the published Docker Containers as it has an environment with all
necessary dependencies already installed.

See also:

It is also possible to install Raster Vision using pip, but it can be time-consuming to install all the necessary depen-
dencies. See Installing Raster Vision for more details.

Note: This Quickstart requires a Docker installation. We have tested this with Docker 18, although you may be able
to use a lower version. See Get Started with Docker for installation instructions.

You’ll need to choose two directories, one for keeping your source file and another for holding experiment output.
Make sure these directories exist:

> export RV_QUICKSTART_CODE_DIR=`pwd`/code
> export RV_QUICKSTART_EXP_DIR=`pwd`/rv_root
> mkdir -p ${RV_QUICKSTART_CODE_DIR} ${RV_QUICKSTART_EXP_DIR}

Now we can run a console in the the Docker container by doing

> docker run --rm -it -p 6006:6006 \
-v ${RV_QUICKSTART_CODE_DIR}:/opt/src/code \
-v ${RV_QUICKSTART_EXP_DIR}:/opt/data \
quay.io/azavea/raster-vision:cpu-0.8 /bin/bash

7

https://spacenetchallenge.github.io/datasets/datasetHomePage.html
https://www.docker.com/get-started

Raster Vision Documentation, Release 0.8.0

See also:

See Docker Containers for more information about setting up Raster Vision with Docker containers.

2.1 The Data

2.2 Creating an ExperimentSet

Create a Python file in the ${RV_QUICKSTART_CODE_DIR} named tiny_spacenet.py. Inside, you’re going
to create an Experiment Set. You can think of an ExperimentSet a lot like the unittest.TestSuite: It’s a class
that contains specially-named methods that are run via reflection by the rastervision command line tool.

tiny_spacenet.py

import rastervision as rv

class TinySpacenetExperimentSet(rv.ExperimentSet):
def exp_main(self):

base_uri = ('https://s3.amazonaws.com/azavea-research-public-data/'
'raster-vision/examples/spacenet')

train_image_uri = '{}/RGB-PanSharpen_AOI_2_Vegas_img205.tif'.format(base_uri)
train_label_uri = '{}/buildings_AOI_2_Vegas_img205.geojson'.format(base_uri)
val_image_uri = '{}/RGB-PanSharpen_AOI_2_Vegas_img25.tif'.format(base_uri)
val_label_uri = '{}/buildings_AOI_2_Vegas_img25.geojson'.format(base_uri)

task = rv.TaskConfig.builder(rv.OBJECT_DETECTION) \
.with_chip_size(300) \
.with_classes({

'building': (1, 'red')
}) \
.with_chip_options(neg_ratio=1.0,

ioa_thresh=0.8) \
.with_predict_options(merge_thresh=0.1,

score_thresh=0.5) \
.build()

backend = rv.BackendConfig.builder(rv.TF_OBJECT_DETECTION) \
.with_task(task) \
.with_debug(True) \
.with_batch_size(1) \
.with_num_steps(2) \
.with_model_defaults(rv.SSD_MOBILENET_V2_COCO) \
.build()

train_raster_source = rv.RasterSourceConfig.builder(rv.GEOTIFF_SOURCE) \
.with_uri(train_image_uri) \
.with_stats_transformer() \
.build()

train_scene = rv.SceneConfig.builder() \
.with_task(task) \
.with_id('train_scene') \
.with_raster_source(train_raster_source) \
.with_label_source(train_label_uri) \
.build()

(continues on next page)

8 Chapter 2. Quickstart

Raster Vision Documentation, Release 0.8.0

(continued from previous page)

val_raster_source = rv.RasterSourceConfig.builder(rv.GEOTIFF_SOURCE) \
.with_uri(val_image_uri) \
.with_stats_transformer() \
.build()

val_scene = rv.SceneConfig.builder() \
.with_task(task) \
.with_id('val_scene') \
.with_raster_source(val_raster_source) \
.with_label_source(val_label_uri) \
.build()

dataset = rv.DatasetConfig.builder() \
.with_train_scene(train_scene) \
.with_validation_scene(val_scene) \
.build()

experiment = rv.ExperimentConfig.builder() \
.with_id('tiny-spacenet-experiment') \
.with_root_uri('/opt/data/rv') \
.with_task(task) \
.with_backend(backend) \
.with_dataset(dataset) \
.with_stats_analyzer() \
.build()

return experiment

if __name__ == '__main__':
rv.main()

The exp_main method has a special name: any method starting with exp_ is one that Raster Vision will look for
experiments in. Raster Vision does this by calling the method and processing any experiments that are returned - you
can either return a single experiment or a list of experiments.

Notice that we create a TaskConfig and BackendConfig that configure Raster Vision to perform object detection
on buildings. In fact, Raster Vision isn’t doing any of the heavy lifting of actually training the model - it’s using the
TensorFlow Object Detection API for that. Raster Vision just provides a configuration wrapper that sets up all of the
options and data for the experiment workflow that utilizes that library.

You also can see we set up a SceneConfig, which points to a RasterSourceConfig, and calls
with_label_source with a GeoJSON URI, which sets a default LabelSourceConfig type into the
scene based on the extension of the URI. We also set a StatsTransformer to be used for the
RasterSource represented by this configuration by calling with_stats_transformer(), which sets a de-
fault StatsTransformerConfig onto the RasterSourceConfig transformers.

2.3 Running an experiment

Now that you’ve configured an experiment, we can perform a dry run of executing it to see what running the full
workflow will look like:

2.3. Running an experiment 9

https://github.com/tensorflow/models/tree/master/research/object_detection

Raster Vision Documentation, Release 0.8.0

> cd /opt/src/code
> rastervision run local -p tiny_spacenet.py -n

Ensuring input files exist [####################################] 100%
Checking for existing output [####################################] 100%

Commands to be run in this order:
ANALYZE from tiny-spacenet-experiment

CHIP from tiny-spacenet-experiment
DEPENDS ON: ANALYZE from tiny-spacenet-experiment

TRAIN from tiny-spacenet-experiment
DEPENDS ON: CHIP from tiny-spacenet-experiment

BUNDLE from tiny-spacenet-experiment
DEPENDS ON: ANALYZE from tiny-spacenet-experiment
DEPENDS ON: TRAIN from tiny-spacenet-experiment

PREDICT from tiny-spacenet-experiment
DEPENDS ON: ANALYZE from tiny-spacenet-experiment
DEPENDS ON: TRAIN from tiny-spacenet-experiment

EVAL from tiny-spacenet-experiment
DEPENDS ON: ANALYZE from tiny-spacenet-experiment
DEPENDS ON: PREDICT from tiny-spacenet-experiment

The console output above is what you should expect - although there will be a color scheme to make things easier to
read in terminals that support it.

Here we see that we’re about to run the ANALYZE, CHIP, TRAIN, BUNDLE, PREDICT, and EVAL commands, and
what they depend on. You can change the verbosity to get even more dry run output - we won’t list the output here to
save space, but give it a try:

> rastervision -v run local -p tiny_spacenet.py -n
> rastervision -vv run local -p tiny_spacenet.py -n

When we’re ready to run, we just remove the -n flag:

> rastervision run local -p tiny_spacenet.py

2.4 Seeing Results

If you go to ${RV_QUICKSTART_EXP_DIR} you should see a folder structure like this.

Note: This uses the tree command which you may need to install first.

> tree -L 3

.
analyze

tiny-spacenet-experiment
command-config.json

(continues on next page)

10 Chapter 2. Quickstart

Raster Vision Documentation, Release 0.8.0

(continued from previous page)

stats.json
bundle

tiny-spacenet-experiment
command-config.json
predict_package.zip

chip
tiny-spacenet-experiment

command-config.json
label-map.pbtxt
train-debug-chips.zip
train.record
train_scene-f353604b-7bc6-40b3-b9ce-e6d45cd27e8c.record
val_scene-f3086bc2-6281-4d46-a612-cf04094db1fb.record
validation-debug-chips.zip
validation.record

eval
tiny-spacenet-experiment

command-config.json
eval.json

experiments
tiny-spacenet-experiment.json

predict
tiny-spacenet-experiment

command-config.json
val_scene.json

train
tiny-spacenet-experiment

checkpoint
command-config.json
eval
model
model.ckpt.data-00000-of-00001
model.ckpt.index
model.ckpt.meta
pipeline.config
tiny-spacenet-experiment.tar.gz
train

Each directory with a command name contains output for that command type across experiments. The directory
inside those have our experiment ID as the name - this is so different experiments can share root_uri’s without
overwritting each other’s output. You can also use “keys”, e.g. .with_chip_key('chip-size-300') on
an ExperimentConfigBuilder to set the directory for a command across experiments, so that they can share
command output. This is useful in the case where many experiments have the same CHIP output, and so you only
want to run that once for many train commands from various experiments. The experiment configuration is also saved
off in the experiments directory.

Don’t get too excited to look at the evaluation results in eval/tiny-spacenet-experiment/ - we trained a
model for 1 step, and the model is likely making random predictions at this point. We would need to train on a lot
more data for a lot longer for the model to become good at this task.

2.5 Predict Packages

To immediately use Raster Vision with a fully trained model, one can make use of the pretrained models in our Model
Zoo.

2.5. Predict Packages 11

https://github.com/azavea/raster-vision-examples#model-zoo
https://github.com/azavea/raster-vision-examples#model-zoo

Raster Vision Documentation, Release 0.8.0

For example, to perform semantic segmentation using a MobileNet-based DeepLab model that has been pretrained for
Las Vegas, one can type:

> rastervision predict https://s3.amazonaws.com/azavea-research-public-data/raster-
→˓vision/examples/model-zoo/vegas-building-seg/predict_package.zip https://s3.
→˓amazonaws.com/azavea-research-public-data/raster-vision/examples/model-zoo/vegas-
→˓building-seg/1929.tif predictions.tif

This will perform a prediction on the image 1929.tif using the provided prediction package, and will produce a
file called predictions.tif that contains the predictions. Notice that the prediction package and the input raster
are transparently downloaded via HTTP. The input image (false color) and predictions are reproduced below.

img/vegas/1929.png

img/vegas/predictions.png

12 Chapter 2. Quickstart

Raster Vision Documentation, Release 0.8.0

See also:

You can read more about the Predict Package and the predict CLI command in the documentation.

2.6 Next Steps

This is just a quick example of a Raster Vision workflow. For a more complete example of how to train a model on
SpaceNet (optionally using GPUs on AWS Batch) and view the results in QGIS, see the SpaceNet examples in the
Raster Vision Examples repository.

2.6. Next Steps 13

https://github.com/azavea/raster-vision-examples

Raster Vision Documentation, Release 0.8.0

14 Chapter 2. Quickstart

CHAPTER 3

Setup

3.1 Installing Raster Vision

You can get the library directly from PyPI:

> pip install rastervision

Note: Raster Vision requires Python 3 or later.

3.1.1 Troubleshooting macOS Installation

If you encounter problems running pip install rastervision on macOS, you may have to manually install
Cython and pyproj.

To circumvent a problem installing pyproj with Python 3.7, you may also have to install that library using
git+https:

> pip install cython
> pip install git+https://github.com/jswhit/pyproj.git
> pip install rastervision

3.1.2 Using AWS, Tensorflow, and/or Keras

If you’d like to use AWS, Tensorflow and/or Keras with Raster Vision, you can include any of these extras:

> pip install rastervision[aws,tensorflow,tensorflow-gpu]

If you’d like to use Raster Vision with Tensorflow Object Detection or TensorFlow DeepLab, you’ll need to follow the
instructions in thier documentation about how to install, or look at our Dockerfile to see an example of setting this up.

15

https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/tensorflow/models/tree/master/research/deeplab

Raster Vision Documentation, Release 0.8.0

Note: You must install Tensorflow Object Detection and Deep Lab from Azavea’s fork of the models repository, since
it contains some necessary changes that have not yet been merged back upstream.

Note: The usage of Docker Containers is recommended, as it provides a consistent environment for running Raster
Vision.

If you have Docker installed, simply run the published container according to the instructions in Docker Containers

3.2 Raster Vision Configuration

Raster Vision is configured via the everett library.

Raster Vision will look for configuration in the following locations, in this order:

• Environment Variables

• A .env file in the working directory that holds environment variables.

• Raster Vision INI configuration files

By default, Raster Vision looks for a configuration file named default in the ${HOME}/.rastervision folder.

Profiles allow you to specify profile names from the command line or enviroment variables to determine which settings
to use. The configuration file used will be named the same as the profile: if you had two profiles (the default and
one named myprofile), your ${HOME}/.rastervision would look like this:

> ls ~/.rastervision
default myprofile

See the root options of the Command Line Interface for the option to set the profile.

3.2.1 RV

[RV]
model_defaults_uri = ""

• model_defaults_uri - Specifies the URI of the Model Defaults JSON. Leave this option out to use the
Raster Vision supplied model defaults.

3.2.2 PLUGINS

[PLUGINS]
files=[]
modules=[]

• files - Optional list of Python file URIs to gather plugins from. Must be a JSON-parsable array of values,
e.g. ["analyzers.py","backends.py"].

• modules - Optional list of modules to load plugins from. Must be a JSON-parsable array of values, e.g.
["rvplugins.analyzer","rvplugins.backend"].

See Plugins for more information about the Plugin architecture.

16 Chapter 3. Setup

https://github.com/azavea/models/tree/AZ-v1.11-RV-v0.8.0
https://everett.readthedocs.io/en/latest/index.html

Raster Vision Documentation, Release 0.8.0

3.2.3 Other Sections

Other configurations are documented elsewhere:

• aws batch config section

Environment Variables

Any INI file option can also be stated in the environment. Just prepend the section name to the setting name, e.g.
RV_MODEL_DEFAULTS_URI.

In addition to those environment variables that match the INI file values, there are the following environment variable
options:

• TMPDIR - Setting this environment variable will cause all temporary directories to be created inside this folder.
This is useful, for example, when you have a Docker conatiner setup that mounts large network storage into a
specific directory inside the Docker container. The tmp_dir can also be set on Command Line Interface as a root
option.

• RV_CONFIG - Optional path to the specific Raster Vision Configuration file. These configurations will override
configurations that exist in configurations files in the default locations, but will not cause those configurations
to be ignored.

• RV_CONFIG_DIR - Optional path to the directory that contains Raster Vision configuration. Defaults to
${HOME}/.rastervision

3.3 Docker Containers

Using the Docker containers published for Raster Vision allows you to use a fully set up environment. We have tested
this with Docker 18, although you may be able to use a lower version.

Docker containers are published to quay.io/azavea/raster-vision. To run the raster vision container for the latest release,
run:

> docker run --rm -it quay.io/azavea/raster-vision:cpu-0.8 /bin/bash

You’ll likely need to load up volumes and expose ports to make this container fully useful; see the docker/console
script for an example usage.

We publish containers set up for both CPU-only running and GPU-running, and tag each container as appropriate.
So you can also pull down the quay.io/azavea/raster-vision:gpu-0.8 image, as well as quay.io/
azavea/raster-vision:cpu-latest and quay.io/azavea/raster-vision:gpu-latest.

You can also base your own Dockerfiles off the Raster Vision container to use with your own codebase. See the
Dockerfiles in the Raster Vision Examples repository.

3.4 Running on a machine with GPUs

If you are running Raster Vision in a Docker container with GPUs - e.g. if you have your own GPU machine or you
spun up a GPU-enabled machine on a cloud provider like a p3.2xlarge on AWS - you’ll need to make sure of a couple
of things so that the Docker container is able to utilize the GPUs.

You’ll need to install the nvidia-docker runtime on your system. Follow their quickstart and installation instructions.
Make sure that your GPU is supported by NVIDIA Docker - if not you might need to find another way to have your

3.3. Docker Containers 17

https://quay.io/repository/azavea/raster-vision
https://github.com/azavea/rastervision/tree/0.8/docker/console
https://github.com/azavea/raster-vision/examples
https://github.com/NVIDIA/nvidia-docker
https://github.com/NVIDIA/nvidia-docker#quickstart

Raster Vision Documentation, Release 0.8.0

Docker container communicate with the GPU. If you figure out how to support more GPUs, please let us know so we
can add the steps to this documentation!

When running your Docker container, be sure to include the --runtime=nvidia option, e.g.

> docker run --runtime=nvidia --rm -it quay.io/azavea/raster-vision:gpu-0.8 /bin/bash

We recommend you ensure that the GPUs are actually enabled. If you don’t, you may run a training job that you think
is using the GPU and isn’t, and runs very slowly.

One way to check this is to make sure TensorFlow can see the GPU(s). To do this, open up an ipython console and
initialize TensorFlow:

> ipython
In [1]: import tensorflow as tf
In [2]: sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))

This should print out console output that looks something like:

.../gpu/gpu_device.cc:1405] Found device 0 with properties: name: GeForce GTX

If you have nvidia-smi installed, you can also use this command to inspect GPU utilization while the training job is
running:

> watch -d -n 0.5 nvidia-smi

3.5 Setting up AWS Batch

If you want to run code against AWS, you’ll need a specific Raster Vision AWS Batch setup on your account, which
you can accomplish through the instructions at the Raster Vision for AWS Batch setup repository.

Set the appropriate configuration in your Raster Vision Configuration:

[AWS_BATCH]
job_queue=rasterVisionQueue
job_definition=raster-vision-gpu
attempts=1

• job_queue - Job Queue to submit Batch jobs to.

• job_definition - The Job Definition that define the Batch jobs to run.

• attempts - Optional number of attempts to retry failed jobs.

See also:

For more information about how Raster Vision uses AWS Batch, see the section: Running on AWS Batch.

18 Chapter 3. Setup

https://developer.nvidia.com/nvidia-system-management-interface
https://github.com/azavea/raster-vision-aws

CHAPTER 4

Experiment Configuration

Experiments are configured programmatically using a compositional API based on the Fluent Builder Pattern.

4.1 Experiment Set

An experiment set is a set of related experiments and can be created by subclassing ExperimentSet. For each exper-
iment, the class should have a method prefixed with exp_ that returns either a single ExperimentConfig, or a list of
ExperimentConfig objects.

In the tiny_spacenet.py example from the Quickstart, the TinySpacenetExperimentSet is the
ExperimentSet that Raster Vision finds when executing rastervision run -p tiny_spacenet.py.

4.2 ExperimentConfig

An experiment is a sequence of commands that represents a machine learning workflow. The way those workflows
are configured is by constructing an ExperimentConfig. An ExperimentConfig is what is returned from the
experiment methods of an ExperimentSet, and are used by Raster Vision to determine what and how Commands
will be run. While the actual execution of the commands, be it locally or on AWS Batch, are determined by Experi-
mentRunners, all the details about how the commands will execute (which files, what methods, what hyperparameters,
etc.) are determined by the ExperimentConfig.

The following diagram shows a hierarchy of the high level components that comprise an experiment configuration:

19

Raster Vision Documentation, Release 0.8.0

In the tiny_spacenet.py example, we can see that the experiment is the very last thing constructed and returned.

experiment = rv.ExperimentConfig.builder() \
.with_id('tiny-spacenet-experiment') \
.with_root_uri('/opt/data/rv') \
.with_task(task) \
.with_backend(backend) \
.with_dataset(dataset) \
.with_stats_analyzer() \
.build()

4.3 Task

A Task is a computer vision task such as chip classification, object detection, or semantic segmentation. Tasks are
configured using a TaskConfig, which is then set into the experiment with the .with_task(task) method.

20 Chapter 4. Experiment Configuration

Raster Vision Documentation, Release 0.8.0

4.3.1 Chip Classification

rv.CHIP_CLASSIFICATION

In chip classification, the goal is to divide the scene up into a grid of cells and classify each cell. This task is good
for getting a rough idea of where certain objects are located, or where indiscrete “stuff” (such as grass) is located. It
requires relatively low labeling effort, but also produces spatially coarse predictions. In our experience, this task trains
the fastest, and is easiest to configure to get “decent” results.

4.3.2 Object Detection

rv.OBJECT_DETECTION

In object detection, the goal is to predict a bounding box and a class around each object of interest. This task re-
quires higher labeling effort than chip classification, but has the ability to localize and individuate objects. Object
detection models require more time to train and also struggle with objects that are very close together. In theory, it is
straightforward to use object detection for counting objects.

4.3.3 Semantic Segmentation

rv.SEMANTIC_SEGMENTATION

In semantic segmentation, the goal is to predict the class of each pixel in a scene. This task requires the highest labeling
effort, but also provides the most spatially precise predictions. Like object detection, these models take longer to train
than chip classification models.

4.3.4 Future Tasks

It is possible to add support for new tasks by extending the Task class. Some potential tasks to add are chip regres-
sion (goal: predict a number for each chip) and instance segmentation (goal: predict a segmentation mask for each
individual object).

4.3.5 TaskConfig

A TaskConfig is always constructed through a builder, which is created with key from the .build static method
of TaskConfig. In our tiny_spacenet.py example, we configured an object detection task:

task = rv.TaskConfig.builder(rv.OBJECT_DETECTION) \
.with_chip_size(512) \
.with_classes({

'building': (1, 'red')
}) \
.with_chip_options(neg_ratio=1.0,

ioa_thresh=0.8) \
.with_predict_options(merge_thresh=0.1,

score_thresh=0.5) \
.build()

See also:

The TaskConfigBuilder API Reference docs have more information about the Task types available.

4.3. Task 21

Raster Vision Documentation, Release 0.8.0

4.4 Backend

To avoid reinventing the wheel, Raster Vision relies on third-party libraries to implement core functionality around
building and training models for the various computer vision tasks it supports. To maintain flexibility and avoid
being tied to any one library, Raster Vision tasks interact with third-party libraries via a “backend” interface inspired
by Keras. Each backend is a subclass of Backend and contains methods for translating between Raster Vision data
structures and calls to a third-party library.

4.4.1 Keras Classification

rv.KERAS_CLASSIFICATION

For chip classification, the default backend is Keras Classification, which is a small, simple library for image classifi-
cation using Keras. Currently, it only has support for ResNet50.

4.4.2 TensorFlow Object Detection

rv.TF_OBJECT_DETECTION

For object detection, the default backend is the Tensorflow Object Detection API. It supports a variety of object
detection architectures such as SSD, Faster-RCNN, and RetinaNet with Mobilenet, ResNet, and Inception as base
models.

4.4.3 TensorFlow DeepLab

rv.TF_DEEPLAB

For semantic segmentation, the default backend is Tensorflow Deeplab. It has support for the Deeplab segmentation
architecture with Mobilenet and Inception as base models.

Note: For each backend included with Raster Vision there is a list of Model Defaults with a default configuration for
each model architecture. Each default can be considered a good starting point for configuring that model.

4.4.4 BackendConfig

A BackendConfig is always constructed through a builder, which is created with key from the .build static
method of BackendConfig. In our tiny_spacenet.py example, we configured the TensorFlow Object Detec-
tion backend:

backend = rv.BackendConfig.builder(rv.TF_OBJECT_DETECTION) \
.with_task(task) \
.with_debug(True) \
.with_batch_size(8) \
.with_num_steps(5) \
.with_model_defaults(rv.SSD_MOBILENET_V2_COCO) \
.build()

See also:

The BackendConfig API Reference docs have more information about the Backend types available.

22 Chapter 4. Experiment Configuration

https://keras.io/backend/
https://keras.io/backend/

Raster Vision Documentation, Release 0.8.0

4.5 Dataset

A Dataset contains the training, validation, and test splits needed to train and evaluate a model. Each dataset split is
a list of scenes. A dataset can also hold Augmentors, which describe how to augment the training scenes (but not the
validation and test scenes).

In our tiny_spacenet.py example, we configured the dataset with single scenes, though more often in real use
cases you call with_train_scenes and with_validaiton_scenes with many scenes:

dataset = rv.DatasetConfig.builder() \
.with_train_scene(train_scene) \
.with_validation_scene(val_scene) \
.build()

4.6 Scene

A scene represents an image, associated labels, and an optional Area of Interest (AOI) that describes what area of the
scene has been exhaustively labeled. Labels are task-specific annotations, and can represent geometries (bounding
boxes for object detection or chip classification), rasters (semantic segmentaiton), or even numerical values (for re-
gression tasks, not yet implemented). Specifying an AOI allows Raster Vision to understand not only where it can pull
“positive” chips from, or subsets of imagery that contain the target class we are trying to identify, but also lets Raster
Vision know where it is able to pull “negative” examples, or subsets of imagery that contain none of the elements that
are desired to be detected.

A scene is composed of the following elements:

• Image: Represented in Raster Vision by a RasterSource, an large scene image can contain multiple sub-
images or a single file.

• Labels: Represented in Raster Vision as a LabelSource, this is what provides the annotates or labels for the
scene. The nature of the labels that are produced by the LabelSource are specific to the Task that the machine
learning model is performing.

• AOI (Optional): An Area of Interest that describes which sections of the scene image (RasterSource) are ex-
haustively labeled.

In addition to the outline above, which describes training data completely, a LabelStore is also associated with scenes
on which Raster Vision will perform prediction. The label store determines how to store and retrieve the predictions
from a scene.

4.5. Dataset 23

https://en.wikipedia.org/wiki/Training,_test,_and_validation_sets

Raster Vision Documentation, Release 0.8.0

4.6.1 SceneConfig

A SceneConfig consists of a RasterSource optionally combined with a LabelSource, LabelStore, and
AOI.

In our tiny_spacenet.py example, we configured the train scene with a GeoTIFF URI and a GeoJSON URI.
We pass in a built RasterSource, however we pass in just the URI for the LabelSource. This is because the
SceneConfig can construct a default LabelSource based on the URI using Default Providers.

train_scene = rv.SceneConfig.builder() \
.with_task(task) \
.with_id('train_scene') \
.with_raster_source(train_raster_source) \
.with_label_source(train_label_uri) \
.build()

The validation scene is also constructed very similary. However, it’s worth noting that the LabelStore is not even
mentioned in the building of the configuraiton. This is because the prediction label store can be deteremined by Default
Providers, by finding the default LabelStore provider for a given task.

4.6.2 RasterSource

A RasterSource represents a source of raster data for a scene, and has subclasses for various data sources. They
are used to retrieve small windows of raster data from larger scenes. You can also set a subset of channels (i.e. bands)
that you want to use and their order using a RasterSource. For example, satellite imagery often contains more than
three channels, but pretrained models trained on datasets like Imagenet only support three (RGB) input channels. In
order to cope with this situation, we can select three of the channels to utilize.

GeoTIFF

rv.GEOTIFF_SOURCE

Georeferenced imagery stored as GeoTIFFs can be read using a GeoTIFFSource. If there are multiple image files
that cover a single scene, you can pass the corresponding list of URIs using with_uris(), and read from the
RasterSource as if it were a single stitched-together image. This is implemented behind the scenes using Rasterio,
which builds a VRT out of the constituent images.

Image

rv.IMAGE_SOURCE

Non-georeferenced images including .tif, .png, and .jpg files can be read using an ImageSource. This is
useful for oblique drone imagery, biomedical imagery, and any other (potentially massive!) non-georeferenced images.

Segmentation GeoJSON

rv.GEOJSON_SOURCE

Semantic segmentation labels stored as polygons and lines in a GeoJSON file can be rasterized and read using a
GeoJSONSource. This is a slightly unusual use of a RasterSource as we’re using it to read labels, and not
images to use as input to a model.

24 Chapter 4. Experiment Configuration

Raster Vision Documentation, Release 0.8.0

RasterSourceConfig

In the tiny_spacenet.py example, we build up the training scene raster source:

train_raster_source = rv.RasterSourceConfig.builder(rv.GEOTIFF_SOURCE) \
.with_uri(train_image_uri) \
.with_stats_transformer() \
.build()

See also:

The RasterSourceConfig API Reference docs have more information about the RasterSource types available.

4.6.3 LabelSource

A LabelSource is an object that allows reading ground truth labels for a scene. There are subclasses for different
tasks and data formats. They can be queried for the labels that lie within a window and are used for creating training
chips, as well as providing ground truth labels for evaluation against validation scenes.

In the tiny_spacenet.py example, we build up the training scene raster source:

train_raster_source = rv.RasterSourceConfig.builder(rv.GEOTIFF_SOURCE) \
.with_uri(train_image_uri) \
.with_stats_transformer() \
.build()

See also:

The LabelSourceConfig API Reference docs have more information about the LabelSource types available.

4.6.4 LabelStore

A LabelStore is an object that allows reading and writing predicted labels for a scene. There are subclasses for
different tasks and data formats. They are used for saving predictions and then loading them during evaluation.

In the tiny_spacenet.py example, there is no explicit LabelStore supplied on the validation scene. It instead
relies on the Default Providers architecture to determine the correct label store to use. If we wanted to state the label
store explicitly, the following code would be equivalent:

val_label_store = rv.LabelStoreConfing.builder(rv.OBJECT_DETECTION_GEOJSON) \
.build()

val_scene = rv.SceneConfig.builder() \
.with_task(task) \
.with_id('val_scene') \
.with_raster_source(val_raster_source) \
.with_label_source(val_label_uri) \
.with_label_store(val_label_store) \
.build()

Notice the above example does not set the explicit URI for where the LabelStore will store it’s labels. We could do
that, but if we leave that out the Raster Vision logic will set that path explicitly based on the exeriment’s root directory
and the predict command’s key.

See also:

The LabelStoreConfig API Reference docs have more information about the LabelStore types available.

4.6. Scene 25

Raster Vision Documentation, Release 0.8.0

4.6.5 Raster Transformers

A RasterTransformer is a mechanism for transforming raw raster data into a form that is more suitable for being
fed into a model.

See also:

The RasterTransformerConfig API Reference docs have more information about the RasterTransformer types avail-
able.

4.6.6 Augmentors

Data augmentation is a technique used to increase the effective size of a training dataset. It consists of transforming
the images (and labels) using random shifts in position, rotation, zoom level, and color distribution. Each back-
end has its own ways of doing data augmentation inherited from its underlying third-party library, but some addi-
tional forms of data augmentation are implemented within Raster Vision as Augmentors. For instance, there is a
NodataAugmentor which adds blocks of NODATA values to images to learn to avoid making spurious predictions
over NODATA regions.

See also:

The AugmentorConfig API Reference docs have more information about the Augmentors available.

4.7 Analyzers

Analyzers are used to gather dataset-level statistics and metrics for use in downstream processes. Currently the only
analyzer available is the StatsAnalyzer, which determines the distribution of values over the imagery in order to
normalize values to uint8 values in a StatsTransformer.

See also:

The AnalyzerConfig API Reference docs have more information about the Analyzers available.

4.8 Evaluators

For each task, there is an evaluator that computes metrics for a trained model. It does this by measuring the discrepancy
between ground truth and predicted labels for a set of validation scenes.

Normally you will not have to set any evaluators into the ExperimentConfig, as the default architecture will
choose the evaluator that applies to the specific Task the experiment pertains to.

See also:

The EvaluatorConfig API Reference docs have more information about the Evaluators available.

4.9 Default Providers

Default Providers allow Raster Vision users to either state configuration simply, i.e. give a URI instead of a full
configuration, or not at all. Defaults are provided for a number of configurations. There is also the ability to add new
defaults via the Plugins architecture.

26 Chapter 4. Experiment Configuration

Raster Vision Documentation, Release 0.8.0

For instance, you can specify a RasterSource and LabelSource just by a URI, and the Defaults registered with the
Global Registry will find a default that pertains to that URI. There are default LabelStores and Evaluators per Task, so
you won’t have to state them explicitly unless you need additional configuration or are using a non-default type.

4.9. Default Providers 27

Raster Vision Documentation, Release 0.8.0

28 Chapter 4. Experiment Configuration

CHAPTER 5

Commands

5.1 Command Types

A Raster Vision experiment is a sequence of commands that each run a component of a machine learning workflow.

5.1.1 ANALYZE

The ANALYZE command is used to analyze scenes that are part of an experiment and produce some output that can
be consumed by later commands. Geospatial raster sources such as GeoTIFFs often contain 16- and 32-bit pixel color
values, but many deep learning libraries expect 8-bit values. In order to perform this transformation, we need to know
the distribution of pixel values. So one usage of the ANALYZE command is to compute statistics of the raster sources
and save them to a JSON file which is later used by the StatsTransformer (one of the available Raster Transformers)
to do the conversion.

5.1.2 CHIP

Scenes are comprised of large geospatial raster sources (eg. GeoTIFFs) and geospatial label sources (eg. GeoJSONs),
but models can only consume small images (i.e. chips) and labels in pixel based-coordinates. In addition, each backend
has its own dataset format. The CHIP command solves this problem by converting scenes into training chips and into
a format the backend can use for training.

29

Raster Vision Documentation, Release 0.8.0

5.1.3 TRAIN

The TRAIN command is used to train a model using the dataset generated by the CHIP command. The command is
a thin wrapper around the train method in the backend that synchronizes files with the cloud, configures and calls the
training routine provided by the associated third-party machine learning library, and sets up a log visualization server
in some cases (e.g. Tensorboard). The output is a trained model that can be used to make predictions and fine-tune on
another dataset.

5.1.4 PREDICT

The PREDICT command makes predictions for a set of scenes using a model produced by the TRAIN command.
To do this, a sliding window is used to feed small images into the model, and the predictions are transformed from
image-centric, pixel-based coordinates into scene-centric, map-based coordinates.

5.1.5 EVAL

The EVAL command evaluates the quality of models by comparing the predictions generated by the PREDICT com-
mand to ground truth labels. A variety of metrics including F1, precision, and recall are computed for each class (as
well as overall) and are written to a JSON file.

5.1.6 BUNDLE

The BUNDLE command gathers files necessary to create a prediction package from the output of the previous com-
mands. A prediction package contains a model file plus associated configuration data, and can be used to make
predictions on new imagery in a deployed application.

30 Chapter 5. Commands

CHAPTER 6

Running Experiments

Running experiments in Raster Vision is done by the run rastervision command. This looks in all the places
stated by the command for Experiment Set classes and executes methods to get a collection of ExperimentConfig
objects. These are fed into the ExperimentRunner that is chosed as a command line argument, which then
determines how the commands derived from the experiments should be executed.

6.1 ExperimentRunners

An ExperimentRunner takes a collection of ExperimentConfig objects and executes commands derived from
those configurations. The commands it chooses to run are based on what commands are requested from the user, what
commands already have been run, and what commands are common between ExperimentConfigs.

Note: Raster Vision considers two commands to be equal if their inputs, outputs and command types (e.g. rv.CHIP,
rv.TRAIN, etc. . .) are the same. Raster Vision will avoid running multiple of the same command in one run with
sameness defined in this way.

During the process of deriving commands from the ExperimentConfigs, each Config object in the experiment has
the chance to update itself for a specific command, and declare what its inputs and outputs are. This is an internal
mechanism, so you won’t have to dive too deeply into this unless you are a contributor or a plugin author. However, it’s
good to know that this is when some of the implicit values are set into the configuration. For instance, the model_uri
property can be set on a rv.BackendConfig by using the with_model_uri on the builder; however the more
standard practice is to let Raster Vision set this property during the “update_for_command” process described above,
which it will do based on the root_uri of the ExperimentConfig as well as other factors.

The parent ExperimentRunner class constructs a Directed Acyclic Graph (DAG) of the commands based on which
commands consume as input other command’s outputs, and passes that off to the implementation to be executed. The
specific implementation will choose how to actually execute each command.

When an ExperimentSet is executed by an ExperimentRunner, it is first converted into a CommandDAG representing
a directed acyclic graph (DAG) of commands. In this graph, there is a node for each command, and an edge from X to
Y if X produces the input of Y. The commands are then executed according to a topological sort of the graph, so as to
respect dependencies between commands.

31

Raster Vision Documentation, Release 0.8.0

Two optimizations are performed to eliminate duplicated computation. The first is to only execute commands whose
outputs don’t exist. The second is to eliminate duplicate nodes that are present when experiments partially overlap,
like when an ExperimentSet is created with multiple experiments that generate the same chip:

6.2 Running locally

A rastervision run local ... command will use the LocalExperimentRunner, which simply exe-
cutes each command in the DAG on the client machine. These run serially, without any parallelization. In future
versions, we may want to split the DAG up into components that can be executed in parallel on a large machine.

6.3 Running on AWS Batch

rastervision run aws_batch ... will execute the commands on AWS Batch. This provides a powerful
mechanism for running Raster Vision experiment workflows. It allows for queues of GPU instances to have 0 instances
running when not in use. With the running of a single command on your own machine, AWS Batch will increase the
instance count to meet the workload with low-cost spot instances, and terminate the instances when the queue of
commands is finished.

The AWSBatchExperimentRunner executes each command as a call to rastervision run_command in-
side of the Docker image configured in the job definition that is sent to AWS Batch. Commands that are dependent
on an upstream command are submitted as a job after the upstream command’s job, with the jobId of the upstream
command job as the parent jobId. This way AWS Batch knows to wait to execute each command until all upstream
commands are finished executing, and will fail the command if any upstream commands fail.

If you are running on AWS Batch or any other remote runner, you will not be able to use your local file system to store
any of the data associated with an experiment - this includes plugin files.

Note: To run on AWS Batch, you’ll need the proper setup. See Setting up AWS Batch for instructions.

32 Chapter 6. Running Experiments

CHAPTER 7

Making Predictions (Inference)

A major focus of Raster Vision is to generate models that can quickly be used to predict, or run inference, on new
imagery. To accomplish this, the last step in the chain of commands applied to an experiment is the BUNDLE command,
which generates a “predict package”. This predict package contains all the necessary model files and configuration to
make predictions using the model that was trained by an experiment.

7.1 How to make predictions with models train by Raster Vision

With a predict package, we can call the predict command from the command line client, or use the Predictor class to
generate predictions from a predict package directly from Python code.

With the command line, you are loading the model and saving the label output in a single call. If you need to call this
for a large number of files, consider using the Predictor in Python code, as this will allow you to load the model
once and use it many times. This can matter a lot if you want the time-to-prediction to be as fast as possible - the
model load time can be orders of magnitudes slower than the prediction time of a loaded model.

The Predictor class is the most flexible way to integrate Raster Vision models into other systems, whether in large
PySpark batch jobs or in web servers running on GPU systems.

7.2 Predict Package

The predict package is a zip file containing the model file and the configuration necessary for Raster Vision to use the
model. The model file or files are specific to the backend: for Keras, there’s a single serialized Keras model file, and
for TensorFlow there is the protobuf serialized inference graph. But this is not all that is needed to create predictions.
The data that was trained on was potentially processed in specific ways by rastertransformer, and the model could have
trained on a subset of bands dictated by the rastersource. We need to know about the configuration of what’s coming
out of the model as a prediction in order to properly serialize it to GeoJSON, raster data, or whatever other labelstore
was used to serialize labels. The prediction logic needs to know what Task is being used to apply any transformations
that take raw model output and transform it to meaningful classifications or other predictions.

33

Raster Vision Documentation, Release 0.8.0

The predict package holds all of this necessary information, so that a prediction call only needs to know what imagery
it is predicting against. This works generically over all models produced by Raster Vision, without additional client
considerations, and therefore abstracts away the specifics of every model when considering how to deploy prediction
software.

34 Chapter 7. Making Predictions (Inference)

CHAPTER 8

Command Line Interface

The Raster Vision command line utiliy, rastervision is installed with a pip install of rastervision. It con-
sists of subcommands, with some top level options:

> rastervision --help
Usage: python -m rastervision [OPTIONS] COMMAND [ARGS]...

Options:
-p, --profile TEXT Sets the configuration profile name to use.
-v, --verbose Sets the output to be verbose.
--help Show this message and exit.

Commands:
ls Print out a list of Experiment IDs.
predict Make predictions using a predict package.
run Run Raster Vision commands against Experiments.
run_command Run a command from configuration file.

8.1 Commands

8.1.1 run

Run is the main interface into running ExperimentSet workflows.

> rastervision run --help
Usage: python -m rastervision run [OPTIONS] RUNNER [COMMANDS]...

Run Raster Vision commands from experiments, using the experiment runner
named RUNNER.

Options:
-e, --experiment_module TEXT Name of an importable module to look for

(continues on next page)

35

Raster Vision Documentation, Release 0.8.0

(continued from previous page)

experiment sets in. If not supplied,
experiments will be loaded from __main__

-p, --path PATTERN Path of file containing ExprimentSet to run.
-n, --dry-run Execute a dry run, which will print out

information about the commands to be run, but
will not actually run the commands

-x, --skip-file-check Skip the step that verifies that file exist.
-a, --arg KEY VALUE Pass a parameter to the experiments if the

method parameter list takes in a parameter
with that key. Multiple args can be supplied

--prefix PREFIX Prefix for methods containing experiments.
(default: "exp_")

-m, --method PATTERN Pattern to match method names to run.
-f, --filter PATTERN Pattern to match experiment names to run.
-r, --rerun Rerun commands, regardless if their output

files already exist.
--tempdir TEXT Temporary directory to use for this run.
--help Show this message and exit.

Some specific parameters to call out:

Use -a to pass arguments into the experiment methods; many of which take a root_uri, which is where Raster Vision
will store all the output of the experiment. If you forget to supply this, Raster Vision will remind you.

Using the -n or --dry-run flag is useful to see what you’re about to run before you run it. Combine this with the
verbose flag for different levels of output:

> rastervision run spacenet.chip_classification -a root_uri s3://example/ --dry_run
> rastervision -v run spacenet.chip_classification -a root_uri s3://example/ --dry_run
> rastervision -vv run spacenet.chip_classification -a root_uri s3://example/ --dry_
→˓run

Use -x to avoid checking if files exist, which can take a long time for large experiments. This is useful to do the first
run, but if you haven’t changed anything about the experiment and are sure the files are there, it’s often nice to skip
that step.

8.1.2 predict

Use predict to make predictions on new imagery given a Predict Package.

> rastervision predict --help
Usage: python -m rastervision predict [OPTIONS] PREDICT_PACKAGE IMAGE_URI

OUTPUT_URI

Make predictions on the image at IMAGE_URI using PREDICT_PACKAGE and store
the prediciton output at OUTPUT_URI.

Options:
-a, --update-stats Run an analysis on this individual image, as opposed

to using any analysis like statistics that exist in
the prediction package

--channel-order TEXT String containing channel_order. Example: "2 1 0"
--export-config PATH Exports the configuration to the given output file.
--help Show this message and exit.

36 Chapter 8. Command Line Interface

Raster Vision Documentation, Release 0.8.0

8.1.3 ls

The ls command very simply lists the IDs of experiments in the given module or file. This functionality is likely to
expand to give more information about expriments discovered in a project in later versions.

> rastervision ls --help
Usage: python -m rastervision ls [OPTIONS]

Print out a list of Experiment IDs.

Options:
-e, --experiment-module TEXT Name of an importable module to look for

experiment sets in. If not supplied,
experiments will be loaded from __main__

-a, --arg KEY VALUE Pass a parameter to the experiments if the
method parameter list takes in a parameter
with that key. Multiple args can be supplied

--help Show this message and exit.

8.1.4 run_command

The run_command is used to run a specific command from a serialized command configuration. This is likely only
useful to people writing ExperimentRunners that want to run commands remotely from serialzed command JSON.

> rastervision run_command --help
Usage: python -m rastervision run_command [OPTIONS] COMMAND_CONFIG_URI

Run a command from a serialized command configuration at
COMMAND_CONFIG_URI.

Options:
--help Show this message and exit.

8.1. Commands 37

Raster Vision Documentation, Release 0.8.0

38 Chapter 8. Command Line Interface

CHAPTER 9

Miscellaneous Topics

9.1 FileSystems

The FileSystem architecture allows support of multiple filesystems through an interface, that is chosen by URI. We
currently support the local file system, AWS S3, and HTTP. Some filesystems support read only (HTTP), while others
are read/write.

If you need to support other file storage systems, you can add new FileSystems via the plugin. We’re happy to take
contributions on new FileSystem support if it’s generally useful!

9.2 Viewing Tensorboard

Backends that utilize TensorFlow will start up an instance of TensorBoard while training. To view Tensorboard, go to
https://<domain>:6006/. If you’re running locally, then <domain> should be localhost, and if you are
running remotely (for example AWS), <public_dns> is the public DNS of the machine running the training command.

9.3 Model Defaults

Model Defaults allow you to use a single key to set attributes into backends, instead of having to explicitly state
them for every experiment that you want to use defaults for. This is useful for, say, using a key to refer to the
pretrained model weights and hyperparameter configuration of various models. Each Backend can interpret it’s model
defaults differently. For more information, see the rastervision/backend/model_defaults.json file in
the repository.

You can set the model defaults to use a different JSON file, so that plugin backends can create model defaults or so
that you can override the defaults provided by Raster Vision. See the RV Configuration Section for that config value.

39

Raster Vision Documentation, Release 0.8.0

9.3.1 TensorFlow Object Detection

This is a list of model defaults for use with the rv.TF_OBJECT_DETECTION backend. They come from the
TensorFlow Object Detection project, and more information about what each model is can be found in the Tensorflow
Object Detection Model Zoo page. Default includes pretrained model weights and TensorFlow Object Detection
pipeline.conf templates for the following models:

• rv.SSD_MOBILENET_V1_COCO

• rv.SSD_MOBILENET_V2_COCO

• rv.SSDLITE_MOBILENET_V2_COCO

• rv.SSD_INCEPTION_V2_COCO

• rv.FASTER_RCNN_INCEPTION_V2_COCO

• rv.FASTER_RCNN_RESNET50_COCO

• rv.RFCN_RESNET101_COCO

• rv.FASTER_RCNN_RESNET101_COCO

• rv.FASTER_RCNN_INCEPTION_RESNET_V2_ATROUS_COCO

• rv.FASTER_RCNN_NAS

• rv.MASK_RCNN_INCEPTION_RESNET_V2_ATROUS_COCO

• rv.MASK_RCNN_INCEPTION_V2_COCO

• rv.MASK_RCNN_RESNET101_ATROUS_COCO

• rv.MASK_RCNN_RESNET50_ATROUS_COCO

9.3.2 Keras Classification

This is a list of model defaults for use with the rv.KERAS_CLASSIFICATION backend. Keras Classification
only supports one model for now, but more will be added in the future. The pretrained weights come from https:
//github.com/fchollet/deep-learning-models

• rv.RESNET50_IMAGENET

9.3.3 Tensorflow DeepLab

This is a list of model defaults for use with the rv.TF_DEEPLAB backend. They come from the TensorFlow DeepLab
project, and more information about what each model is can be found in the Tensorflow DeepLab Model Zoo page.
Default includes pretrained model weights and backend configurations for the following models:

• rv.XCEPTION_65

• rv.MOBILENET_V2

9.4 Reusing models trained by Raster Vision

To use a model trained by Raster Vision for transfer learning or fine tuning, you can use output of the TRAIN command
of the experiment as a pretrained model of further experiments. The files are listed per backend here:

• rv.KERAS_CLASSIFICATION: You can use the model_weights.hdf5 file in the train command output
as a pretrained model.

40 Chapter 9. Miscellaneous Topics

https://github.com/tensorflow/models/blob/63ecef1a3513b00c01f6aed75e178636746eff71/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/tensorflow/models/blob/63ecef1a3513b00c01f6aed75e178636746eff71/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/fchollet/deep-learning-models
https://github.com/fchollet/deep-learning-models
https://github.com/tensorflow/models/blob/63ecef1a3513b00c01f6aed75e178636746eff71/research/deeplab/g3doc/model_zoo.md

Raster Vision Documentation, Release 0.8.0

• rv.TF_OBJECT_DETECTION: Use the <experiment_id>.tar.gz that is in the train command output
as a pretrained model. The default name of the file is the experiment ID, however you can change the backend
configuration to use another name with the .with_fine_tune_checkpoint_name method.

• rv.TF_DEEPLAB: Use the <experiment_id>.tar.gz that is in the train command output as a pretrained
model. The default name of the file is the experiment ID, however you can change the backend configuration to
use another name with the .with_fine_tune_checkpoint_name method.

9.4. Reusing models trained by Raster Vision 41

Raster Vision Documentation, Release 0.8.0

42 Chapter 9. Miscellaneous Topics

CHAPTER 10

Codebase Design Patterns

10.1 Configuration vs Entity

In Raster Vision we keep a separation between configuration of a thing and the creation of the thing itself. This allows
us to keep the client environment, i.e. the environment that is running the rastervision cli application, and the
runner environment, i.e. the environment that is actually running commands, totally separate. This means you can

43

https://rastervision.io

Raster Vision Documentation, Release 0.8.0

install Raster Vision and run experiments on a machine doesn’t have a GPU or any machine learning library installed,
but can issue commands to an environment that does. This also lets us work with configuration on the client side very
quickly, and leave all the heavy lifting to the runner side.

This separation expressed in a core design principle that is seen across the codebase: the use of the Config and
ConfigBuilder classes.

10.1.1 Config

The Config class represents the configuration of a component of the experiment. It is a declaritive encapsulation of
exactly what we want to run, without actually running anything. We are able to serialize Configs, and because they
describe exactly what we want to do, they become historical artifacts about what happened, messages for running on
remote systems, and records that let us repeat experiments and verify results.

The construction of configuration can include some heavy logic, and we want a clean separation from the Config and
the way we construct it. This is why each Config has a separate ConfigBuilder class.

10.1.2 ConfigBuilder

The ConfigBuilder classes are the main interaction point for users of Raster Vision. They are generally in-
stantiated when client code calls the static .builder() method on the Config. If there are multiple types of
builders, a key is used to state which builder should be returned (e.g. with rv.BackendConfig.builder(rv.
KERAS_CLASSIFICATION). The usage of keys to return specific builder types allows for two things: 1. a standard
interface for constructing builders that only changes based on the parameter passed in, and 2. a way for plugins to
register their own keys, so that using plugins feels exactly like using core Raster Vision code.

The ConfigBuilders are immutable data structures that use what’s called a fluent builder patter. When you call a
method on a builder that sets a property, what you’re actually doing is creating a copy of the builder and returning
it. Not modifying internal state allows us to fork builders into different transformed objects without having to worry
about modifying the internal properties of the builders earlier in the chain of modifications. Using a fluent builder
pattern also gives us a readable and standard way of creating and transforming ConfigBuilders and Configs.

The ConfigBuilder also has a .validate() call that is called whenever .build() is called, which gives the
ConfigBuilder the chance to make sure all required properties are set and are sane. One major advantage of using
the ConfigBuilder pattern over simply having long __init__ methods on Config objects is that you can set up
builders in one part of the code, without setting required properties, and pass it off to another decoupled part of the
code that can use the builder further. As long as the required properties are set before build() is called, you can set
as little or as many properties as you want.

10.2 Fluent Builder Pattern

The ConfigBuilders in Raster Vision use a fluent builder design pattern. This allows the composition and chaining
together of transformations on builders, which encourages readable configuration code. The usage of builders is
always as follows:

• The Config type (SceneConfig, TaskConfig, etc) will always be available through the top level import (which
generally is import rastervision as rv)

• The ConfigBuilder is created from the static method on the Config class, e.g. rv.TaskConfig.
builder(rv.OBJECT_DETECTION). Keys for builder types are also always exposed in the top level pack-
age (unless your key is for a custom plugin, in which case you’re on your own).

44 Chapter 10. Codebase Design Patterns

Raster Vision Documentation, Release 0.8.0

• The builder is then transformed using the .with_*() methods. Each call to a .with_*() method returns a new copy
of the builder with the modifications set, which means you can chain them together. This is the “fluent” part of
the fluent builder pattern.

• You call .build() when you are ready for your fully baked Config object.

You can also call .to_builder() on any Config object, which lets you move between the Config and
ConfigBuilder space easily. This is useful when you want to take a config that was deserialized or constructed in
some other way and use it as a base for further transformation.

10.3 Global Registry

Another major design pattern of Raster Vision is the use of a global registry. This is what gives the ability for the single
interface to construct all subclass builders through the static builder() method on the Config via a key, e.g. rv.
RasterSourceConfig.builder(rv.GEOTIFF_SOURCE). The key is used to look up what ConfigBuilders
are registered inside the global registery, and the registry determines what builder to return from the build() call.
More importantly, this enables Raster Vision to have a flexible system to create Plugins out of anything that has a
keyed ConfigBuilder. The registry pattern goes beyond Configs and ConfigBuilders, though: this is also how internal
classes and plugins are chosen for Default Providers, ExperimentRunners, and FileSystems.

10.3. Global Registry 45

Raster Vision Documentation, Release 0.8.0

46 Chapter 10. Codebase Design Patterns

CHAPTER 11

Plugins

You can extend Raster Vision easily by writing Plugins. Any Config that is created using the Fluent Builder Pattern,
that is based on a key (e.g. rv.BackendConfig.builder(rv.KERAS_CLASSIFICATION)) can use plugins.

All of the configurable entities that are constructed like this in the Raster Vision codebase use the same sort of registra-
tion process as Plugins - the difference is that they are registered internally in the main Raster Vision Global Registry.
Because of this, the best way to figure out how to build components of Raster Vision that can be plugged in is to study
the codebase.

11.1 Creating Plugins

You’ll need to implement an interface for the Plugin, by inhereting from Task, Backend, etc. You will also have
to implement a Config and ConfigBuilder for your type. The Config and ConfigBuilder should like-
wise inheret from the appropriate parent class - for example, if you are implementing a backend plugin, you’ll need
to develop implementations of Backend, BackendConfig, and BackendConfigBuilder. The parent class
__init__ of BackendConfig takes a backend_type, which you will have to assign a unique string. This will
be the key that you later refer to in your experiment configurations. For instance, if you developed a new backend that
passed in the backend_type = "AWESOME", you could reference that backend configuration in an experiment
like this:

backend = rv.BackendConfig.builder("AWESOME") \
.with_awesome_property("etc") \
.build()

You’ll need to implement the to_proto method and the Config and the from_proto method on
ConfigBuilder - in the .proto files for the entity you are creating a plugin for, you’ll see a google.
protobuf.Struct custom_config section. This is the field in the protobuf that can handle arbitrary JSON,
and should be used in plugins for configuration.

47

Raster Vision Documentation, Release 0.8.0

11.2 Registering the Plugin

Your plugin file or module must define a register_plugin method with the following signature:

def register_plugin(plugin_registry):
pass

The plugin_regsitry that is passed in has a number of methods that allow for registring the plugin with Raster
Vision. This is the method that is called on startup of Raster Vision for any plugin configured in the configuration file.
See the Plugin Registry API reference for more information on registration methods.

11.3 Configuring Raster Vision to use your Plugins

Raster Vision searches for register_plugin methods in all the files and modules listed in the Raster Vision
configuration. See documentation on the PLUGINS section of the configuration for more info on how to set this up.

11.4 Plugins in remote environments

In order for plugins to work with any ExperimentRunners that executes commands remotely, the configured files or
modules will have to be available to the remote machines. For example, if you are using AWS Batch, then your
plugin cannot be something that is only stored on your local machine. In that case, you could store the file in S3 or
in a repository that the instances will have access to through HTTP, or you can ensure that the module containing
the plugin is also installed in the remote runner environment (e.g. by baking a Docker container based on the Raster
Vision container that has your plugins installed, and setting up the AWS Batch job definition to use that container).

Command configurations carry with them the paths and module names of the plugins they use. This way, the remote
environment knows what plugins to load in order to successfully run the commands.

11.5 Example Plugin

You can set the file location in the path of your Raster Vision plugin configuration in the files setting, and then use
it in experiments like so (assuming EASY_EVALUATOR was defined the same as above):

evaluator = rv.EvaluatorConfig.builder(EASY_EVALUATOR) \
.with_message("Great job!") \
.build()

You could then set this evaluator on an experiment just as you would an internal evaluator.

48 Chapter 11. Plugins

CHAPTER 12

QGIS Plugin

The Raster Vision QGIS plugin allows Raster Vision users to quickly view the results of experiments run against
geospatial imagery. It also lets you run predictions inside of QGIS using the Predict Package of trained models.

49

Raster Vision Documentation, Release 0.8.0

12.1 Installing

To install the QGIS Plugin, you must have rastervision installed in the Python 3 environment that is running
QGIS. Don’t worry, you won’t have to install all of the deep learning frameworks just to use the plugin - you can just
pip install rastervision (or pip3 install rastervision if Python 3 is not the default on your
system). This has been tested with Python 3.6 and QGIS 3.2.

12.1.1 Installing from Plugin Manager

A package containing all the needed dependencies can be installed through QGIS Plugin Manager. To install from
plugin manager:

Click the menu “Plugins” -> “Manage and Install Plugins”. Enter ‘Raster Vision’ in search box. After installation is
complete, there should be a “Raster Vision” submenu under the “Plugins” menu.

12.1.2 Installing from release

To install, grab the release .tar.gz file from the GitHub Releases page. Extract this into your QGIS Plugins directory,
then restart QGIS and activate the plugin through QGIS menu (“Plugins” -> “Manage and Install Plugins”). You can
use a command like:

tar -xvf rastervision_qgis-v0.8.0.tar.gz -C ${QGIS_PLUGIN_DIRECTORY}

Where ${QGIS_PLUGIN_DIRECTORY} is your QGIS plugin directory. See this GIS StackExchange post if you
need help finding your plugin directory.

12.1.3 QGIS Environment Setup

Note: QGIS environment variables are distinct from Bash environment variables, and can be set by going to “QGIS3”
-> “Preferences” -> “System” -> “Environment” in the menu and then restarting QGIS.

Using with AWS

To use the plugin with files stored on AWS S3, you will need to have boto3 installed, which can be done with pip
install boto3. You’ll also need to set an AWS_PROFILE environment variable in QGIS if you’re not using the
default AWS profile.

Using with Docker

To run predict through Docker, make sure that the Docker command is on the PATH environment variable used by
QGIS.

12.2 Load Experiment

The Load Experiment Dialog of the plugin lets you load results from an experiment.

50 Chapter 12. QGIS Plugin

https://github.com/azavea/raster-vision-qgis/releases
https://gis.stackexchange.com/questions/274311/qgis-3-plugin-folder-location

Raster Vision Documentation, Release 0.8.0

The first step in using this feature is to load up an experiment configuration JSON file. You can find experiment
configurations in the experiments directory under the root_uri of your experiment.

After hitting the Load button, you should see the dialog populate with the train, validation, and test scenes that were
used in the experiment. The names that appear in the dialog are the scene’s ID.

12.2. Load Experiment 51

Raster Vision Documentation, Release 0.8.0

You can select which data type you want form each scene in the “Layers to Load” section. You can also select Scenes
that you want to load from the list boxes.

You can choose one of your configued Style Profiles from the “Style Profile” box. All incoming layers will be styled
according to the style profile.

When you’re satisfied with your choices, pressing OK and the project will load in QGIS. This will clear the current
project in QGIS and load the new layers - if you already have layers, it will confirm that you want to clear out your
project.

The layers that load will have the following naming conventions:

• train-* layers are from train scenes.

• val-* layers are from validation scenes.

• test-* layers are from test scenes.

• Everything will include the scene ID

• Ground truth labels are suffixed with -ground_truth

• Predictions are suffixed with -predictions

52 Chapter 12. QGIS Plugin

Raster Vision Documentation, Release 0.8.0

12.3 Predict

This Dialog allows you to make predictions using a Predict Package from a raster vision experiment.

To use do the following:

• input the predict package URI

• select a layer from the “Input Layer” dropdown, which is populated from the raster layers of the current QGIS
project

• Optionally choose a Style Profile

• Select whether or not to update any stats used by the model with the given image

• Give the path where the prediction labels should be saved to

You can use Docker or a local installation of Raster Vision to run the prediction. If using Docker, you’ll have to give
the name of the image from which to run the container.

This runs a similar process as the predict CLI command, and will load the prediciton layer after prediction completes.

12.3. Predict 53

Raster Vision Documentation, Release 0.8.0

12.4 Style Profiles

Set up style profiles so that when you load an experiment or make predictions, layers are automatically styled with
given SLDs or QML files.

The best way to do this is to styl each of the types of layers you want after first loading an experiment. Export an SLD
or QML of the style for each layer by using the Style -> Save Style command in the Symbology section of the layer
properties. Then, create a style profile for that experiment group, and point it to the appropriate QML or SLD files.
Now you’ll be able to select the style profile when loading new experiments and making predictions.

12.5 Configure

Configure the plugin with a working directory. If the files live on S3, this plugin will download files as necessary to

54 Chapter 12. QGIS Plugin

Raster Vision Documentation, Release 0.8.0

your local working directory. If the file already exists in the working directory, the plugin will check the timestamps
and overwrite the local file if the file on S3 is newer.

12.5. Configure 55

Raster Vision Documentation, Release 0.8.0

56 Chapter 12. QGIS Plugin

CHAPTER 13

API Reference

If you are looking for information on a specific function, class, or method, this part of the documentation is for you.

13.1 API Reference

This part of the documentation lists the full API reference of public classes and functions.

Note: This documentation is not exhaustive, but covers most of the public API that is important to typical Raster
Vision usage.

13.1.1 ExperimentConfigBuilder

An ExperimentConfigBuilder is created by calling

rv.ExperimentConfig.builder()

class rastervision.experiment.ExperimentConfigBuilder(prev=None)

build()
Returns the configuration that is built by this builder.

with_analyze_key(key)
Sets the key associated with the analysis stage.

with_analyze_uri(uri)
Sets the location where the results of the analysis stage will be stored.

with_analyzer(analyzer)
Add an analyzer to be used in the analysis stage.

57

Raster Vision Documentation, Release 0.8.0

with_analyzers(analyzers)
Add analyzers to be used in the analysis stage.

with_backend(backend)
Specifies the backend to be used, e.g. rv.TF_DEEPLAB.

with_bundle_key(key)
Sets the key associated with the bundling stage.

with_bundle_uri(uri)
Sets the location where the results of the bundling stage will be stored.

with_chip_key(key)
Sets the key associated with the “chip” stage.

with_chip_uri(uri)
Sets the location where the results of the “chip” stage will be stored.

with_dataset(dataset)
Specifies the dataset to be used.

with_eval_key(key)
Sets the key associated with the evaluation stage.

with_eval_uri(uri)
Sets the location where the results of the evaluation stage will be stored.

with_evaluator(evaluator)
Sets the evaluator to use for the evaluation stage.

with_evaluators(evaluators)
Sets the evaluators to use for the evaluation stage.

with_id(id)
Sets an id for the experiment.

with_predict_key(key)
Sets the key associated with the prediction stage.

with_predict_uri(uri)
Sets the location where the results of the prediction stage will be stored.

with_root_uri(uri)
Sets the root directory where all output will be stored unless subsequently overridden.

with_stats_analyzer()
Add a stats analyzer to be used in the analysis stage.

with_task(task)
Sets a specific task type.

Args: task: A TaskConfig object.

with_train_key(key)
Sets the key associated with the training stage.

with_train_uri(uri)
Sets the location where the results of the training stage will be stored.

13.1.2 DatasetConfigBuilder

A DatasetConfigBuilder is created by calling

58 Chapter 13. API Reference

Raster Vision Documentation, Release 0.8.0

rv.DatasetConfig.builder()

class rastervision.data.DatasetConfigBuilder(prev=None)

build()
Returns the configuration that is built by this builder.

with_augmentor(augmentor)
Sets the data augmentor to be used.

with_augmentors(augmentors)
Sets the data augmentors to be used.

with_test_scene(scene)
Sets the scene to be used for testing.

with_test_scenes(scenes)
Sets the scenes to be used for testing.

with_train_scene(scene)
Sets the scene to be used for training.

with_train_scenes(scenes)
Sets the scenes to be used for training.

with_validation_scene(scene)
Sets the scene to be used for validation.

with_validation_scenes(scenes)
Sets the scenes to be used for validation.

13.1.3 TaskConfigBuilder

TaskConfigBuilders are created by calling

rv.TaskConfig.builder(TASK_TYPE)

Where TASK_TYPE is one of the following:

rv.CHIP_CLASSIFICATION

class rastervision.task.ChipClassificationConfigBuilder(prev=None)

build()
Returns the configuration that is built by this builder.

with_chip_size(chip_size)
Set the chip_size for this task.

Args: chip_size: Integer value chip size

with_classes(classes: Union[rastervision.core.class_map.ClassMap,
List[str], List[rastervision.protos.class_item_pb2.ClassItem],
List[rastervision.core.class_map.ClassItem], Dict[str, int], Dict[str, Tuple[int,
str]]])

Set the classes for this task.

13.1. API Reference 59

Raster Vision Documentation, Release 0.8.0

Args:

classes: Either a list of class names, a dict which maps class names to class ids, or a dict which
maps class names to a tuple of (class_id, color), where color is a PIL color string.

with_debug(debug)
Flag for producing debug products.

with_predict_batch_size(predict_batch_size)
Sets the batch size to use during prediction.

with_predict_debug_uri(predict_debug_uri)
Set the directory to place prediction debug images

with_predict_package_uri(predict_package_uri)
Sets the URI to save a predict package URI to during bundle.

rv.OBJECT_DETECTION

class rastervision.task.ObjectDetectionConfigBuilder(prev=None)

build()
Returns the configuration that is built by this builder.

with_chip_options(neg_ratio=1, ioa_thresh=0.8, window_method=’chip’, label_buffer=0.0)
Sets object detection configurations for the Chip command

Args:

neg_ratio: The ratio of negative chips (those containing no bounding boxes) to positive chips.
This can be useful if the statistics of the background is different in positive chips. For exam-
ple, in car detection, the positive chips will always contain roads, but no examples of rooftops
since cars tend to not be near rooftops. This option is not used when window_method is sliding.

ioa_thresh: When a box is partially outside of a training chip, it is not clear if (a clipped ver-
sion) of the box should be included in the chip. If the IOA (intersection over area) of the box
with the chip is greater than ioa_thresh, it is included in the chip.

window_method: Different models in the Object Detection API have different

inputs. Some models allow variable size inputs so several methods of building training data
are required

Valid values are:

• chip (default)

• label

– each label’s bounding box is the positive window

• image

– each image is the positive window

• sliding

– each image is from a sliding window with 50% overlap

label_buffer: If method is “label”, the positive window can be buffered. If value is >= 0. and
< 1., the value is treated as a percentage If value is >= 1., the value is treated in number of
pixels

60 Chapter 13. API Reference

Raster Vision Documentation, Release 0.8.0

with_chip_size(chip_size)
Set the chip_size for this task.
Args: chip_size: Integer value chip size

with_classes(classes: Union[rastervision.core.class_map.ClassMap,
List[str], List[rastervision.protos.class_item_pb2.ClassItem],
List[rastervision.core.class_map.ClassItem], Dict[str, int], Dict[str, Tuple[int,
str]]])

Set the classes for this task.
Args:

classes: Either a list of class names, a dict which maps class names to class ids, or a dict which
maps class names to a tuple of (class_id, color), where color is a PIL color string.

with_debug(debug)
Flag for producing debug products.

with_predict_batch_size(predict_batch_size)
Sets the batch size to use during prediction.

with_predict_debug_uri(predict_debug_uri)
Set the directory to place prediction debug images

with_predict_options(merge_thresh=0.5, score_thresh=0.5)
Prediction options for this task.
Args:

merge_thresh: If predicted boxes have an IOA (intersection over area) greater than
merge_thresh, then they are merged into a single box during postprocessing. This is
needed since the sliding window approach results in some false duplicates.

score_thresh: Predicted boxes are only output if their score is above score_thresh.

with_predict_package_uri(predict_package_uri)
Sets the URI to save a predict package URI to during bundle.

rv.SEMANTIC_SEGMENTATION

class rastervision.task.SemanticSegmentationConfigBuilder(prev=None)

build()
Returns the configuration that is built by this builder.

with_chip_options(window_method=’random_sample’, target_classes=None, de-
bug_chip_probability=0.25, negative_survival_probability=1.0,
chips_per_scene=1000, target_count_threshold=1000, stride=None)

Sets semantic segmentation configurations for the Chip command
Args:

window_method: Window method to use for chipping. Options are: ran-
dom_sample, sliding

target_classes: list of class ids to train model on debug_chip_probability: probability
of generating a debug chip.

Applies to the ‘random_sample’ window method.

negative_survival_probability: probability that a sampled negative chip will be
utilized if it does not contain more pixels than target_count_threshold. Applies to
the ‘random_sample’ window method.

13.1. API Reference 61

Raster Vision Documentation, Release 0.8.0

chips_per_scene: number of chips to generate per scene. Applies to the ‘ran-
dom_sample’ window method.

target_count_threshold: minimum number of pixels covering target_classes that
a chip must have. Applies to the ‘random_sample’ window method.

stride: Stride of windows across image. Defaults to half the chip size. Applies to
the ‘sliding_window’ method.

Returns: SemanticSegmentationConfigBuilder

with_chip_size(chip_size)
Set the chip_size for this task.
Args: chip_size: Integer value chip size

with_classes(classes: Union[rastervision.core.class_map.ClassMap,
List[str], List[rastervision.protos.class_item_pb2.ClassItem],
List[rastervision.core.class_map.ClassItem], Dict[str, int], Dict[str, Tuple[int,
str]]])

Set the classes for this task.
Args:

classes: Either a list of class names, a dict which maps class names to class ids, or a dict which
maps class names to a tuple of (class_id, color), where color is a PIL color string.

with_debug(debug)
Flag for producing debug products.

with_predict_batch_size(predict_batch_size)
Sets the batch size to use during prediction.

with_predict_debug_uri(predict_debug_uri)
Set the directory to place prediction debug images

with_predict_package_uri(predict_package_uri)
Sets the URI to save a predict package URI to during bundle.

13.1.4 BackendConfig

BackendConfigBuilders are created by calling

rv.BackendConfig.builder(BACKEND_TYPE)

Where BACKEND_TYPE is one of the following:

rv.KERAS_CLASSIFICATION

class rastervision.backend.KerasClassificationConfigBuilder(prev=None)

build()
Build this configuration, setting any values into the TF object detection pipeline config as necessary.

with_batch_size(batch_size)
Sets the training batch size.

with_config(config_mod, ignore_missing_keys=False, set_missing_keys=False)
Given a dict, modify the tensorflow pipeline configuration such that keys that are found recursively in the
configuration are replaced with those values. TODO: better explination.

62 Chapter 13. API Reference

Raster Vision Documentation, Release 0.8.0

with_debug(debug)
Sets the debug flag for this backend.

with_model_defaults(model_defaults_key)
Sets the backend configuration and pretrained model defaults according to the model defaults configura-
tion.

with_model_uri(model_uri)
Defines the name of the model file that will be created for this model after training.

with_num_epochs(num_epochs)
Sets the number of training epochs.

with_pretrained_model(uri)
Set a pretrained model URI. The filetype and meaning for this model will be different based on the
backend implementation.

with_task(task)
Sets a specific task type.
Args: task: A TaskConfig object.

with_template(template)
Use a template from the dict, string or uri as the base for the Keras Classification API.

with_train_options(sync_interval=600, do_monitoring=True, replace_model=False)
Sets the train options for this backend.
Args:

sync_interval: How often to sync output of training to the cloud (in seconds).

do_monitoring: Run process to monitor training (eg. Tensorboard)

replace_model: Replace the model checkpoint if exists. If false, this will continue training from
checkpoing if exists, if the backend allows for this.

with_training_data_uri(training_data_uri)
Whence comes the training data?
Args: training_data_uri: The location of the training data.

with_training_output_uri(training_output_uri)
Whither goes the training output?
Args:

training_output_uri: The location where the training output will be stored.

rv.TF_OBJECT_DETECTION

class rastervision.backend.TFObjectDetectionConfigBuilder(prev=None)

build()
Build this configuration, setting any values into the TF object detection pipeline config as necessary.

with_batch_size(batch_size)
Sets the training batch size.

with_config(config_mod, ignore_missing_keys=False, set_missing_keys=False)
Given a dict, modify the tensorflow pipeline configuration such that keys that are found recursively in the
configuration are replaced with those values. TODO: better explination.

with_debug(debug)
Sets the debug flag for this backend.

13.1. API Reference 63

Raster Vision Documentation, Release 0.8.0

with_fine_tune_checkpoint_name(fine_tune_checkpoint_name)
Defines the name of the fine tune checkpoint that will be created for this model after training.

with_model_defaults(model_defaults_key)
Sets the backend configuration and pretrained model defaults according to the model defaults configura-
tion.

with_model_uri(model_uri)
Defines the name of the model file that will be created for this model after training.

with_num_steps(num_steps)
Sets the number of training steps.

with_pretrained_model(uri)
Set a pretrained model URI. The filetype and meaning for this model will be different based on the
backend implementation.

with_script_locations(model_main_uri=’/opt/tf-models/object_detection/model_main.py’,
export_uri=’/opt/tf-models/object_detection/export_inference_graph.py’)

with_task(task)
Sets a specific task type.
Args: task: A TaskConfig object.

with_template(template)
Use a template for TF Object Detection pipeline config.
Args:

template: A dict, string or uri as the base for the tensorflow object detection API model train-
ing pipeline, for example those found here: https://github.com/tensorflow/models/tree/
eef6bb5bd3b3cd5fcf54306bf29750b7f9f9a5ea/research/object_detection/samples/configs #
noqa

with_train_options(sync_interval=600, do_monitoring=True, replace_model=False)
Sets the train options for this backend.
Args:

sync_interval: How often to sync output of training to the cloud (in seconds).

do_monitoring: Run process to monitor training (eg. Tensorboard)

replace_model: Replace the model checkpoint if exists. If false, this will continue training from
checkpoing if exists, if the backend allows for this.

with_training_data_uri(training_data_uri)
Whence comes the training data?
Args: training_data_uri: The location of the training data.

with_training_output_uri(training_output_uri)
Whither goes the training output?
Args:

training_output_uri: The location where the training output will be stored.

rv.TF_DEEPLAB

class rastervision.backend.TFDeeplabConfigBuilder(prev=None)

build()
Build this configuration, setting any values into the TFDL config as necessary.

64 Chapter 13. API Reference

https://github.com/tensorflow/models/tree/eef6bb5bd3b3cd5fcf54306bf29750b7f9f9a5ea/research/object_detection/samples/configs
https://github.com/tensorflow/models/tree/eef6bb5bd3b3cd5fcf54306bf29750b7f9f9a5ea/research/object_detection/samples/configs

Raster Vision Documentation, Release 0.8.0

with_batch_size(batch_size)
Sets the training batch size.

with_config(config_mod, ignore_missing_keys=False, set_missing_keys=False)
Given a dict, modify the tensorflow pipeline configuration such that keys that are found recursively in the
configuration are replaced with those values.

with_debug(debug)
Sets the debug flag for this backend.

with_fine_tune_checkpoint_name(fine_tune_checkpoint_name)
Defines the name of the fine tune checkpoint that will be created for this model after training.

with_model_defaults(model_defaults_key)
Sets the backend configuration and pretrained model defaults according to the model defaults configura-
tion.

with_model_uri(model_uri)
Defines the name of the model file that will be created for this model after training.

with_num_steps(num_steps)
Sets the number of training steps.

with_pretrained_model(uri)
Set a pretrained model URI. The filetype and meaning for this model will be different based on the
backend implementation.

with_script_locations(train_py=’/opt/tf-models/deeplab/train.py’, export_py=’/opt/tf-
models/deeplab/export_model.py’)

with_task(task)
Sets a specific task type.
Args: task: A TaskConfig object.

with_template(template)
Use a TFDL config template from dict, string or uri.

with_train_options(train_restart_dir=None, sync_interval=600, do_monitoring=True, re-
place_model=False)

Sets the train options for this backend.
Args:

sync_interval: How often to sync output of training to the cloud (in seconds).

do_monitoring: Run process to monitor training (eg. Tensorboard)

replace_model: Replace the model checkpoint if exists. If false, this will continue training from
checkpoing if exists, if the backend allows for this.

with_training_data_uri(training_data_uri)
Whence comes the training data?
Args: training_data_uri: The location of the training data.

with_training_output_uri(training_output_uri)
Whither goes the training output?
Args:

training_output_uri: The location where the training output will be stored.

13.1.5 SceneConfig

SceneConfigBuilders are created by calling

13.1. API Reference 65

Raster Vision Documentation, Release 0.8.0

rv.SceneConfig.builder()

class rastervision.data.SceneConfigBuilder(prev=None)

build()
Returns the configuration that is built by this builder.

clear_label_source()
Clears the label source for this scene

clear_label_store()
Clears the label store for this scene

with_aoi_uri(uri)
Sets the Area of Interest for the scene.
Args:

uri: The URI points to the AoI (nominally a GeoJSON polygon).

with_id(id)
Sets an id for the scene.

with_label_source(label_source: Union[str, rastervision.data.label_source.label_source_config.LabelSourceConfig])
Sets the raster source for this scene.
Args:

label_source: Can either be a label source configuration, or a string. If a string, the registry
will be queried to grab the default LabelSourceConfig for the string.

Note: A task must be set with with_task before calling this, if calling with a string.

with_label_store(label_store: Union[str, rastervision.data.label_store.label_store_config.LabelStoreConfig,
None] = None)

Sets the raster store for this scene.
Args:

label_store: Can either be a label store configuration, or a string, or None. If a string, the reg-
istry will be queried to grab the default LabelStoreConfig for the string. If None, then the
default for the task from the regsitry will be used.

Note: A task must be set with with_task before calling this, if calling with a string.

with_raster_source(raster_source: Union[str, rastervision.data.raster_source.raster_source_config.RasterSourceConfig],
channel_order=None)

Sets the raster source for this scene.
Args:

raster_source: Can either be a raster source configuration, or a string. If a string, the registry
will be queried to grab the default RasterSourceConfig for the string.

channel_order: Optional channel order for this raster source.

with_task(task)
Sets a specific task type, e.g. rv.OBJECT_DETECTION.

13.1.6 RasterSourceConfig

RasterSourceConfigBuilders are created by calling

rv.RasterSourceConfig.builder(SOURCE_TYPE)

66 Chapter 13. API Reference

Raster Vision Documentation, Release 0.8.0

Where SOURCE_TYPE is one of the following:

rv.GEOTIFF_SOURCE

class rastervision.data.GeoTiffSourceConfigBuilder(prev=None)

build()
Returns the configuration that is built by this builder.

with_channel_order(channel_order)
Defines the channel order for this raster source.
Args:

channel_order: numpy array of length n where n is the number of channels to use and the val-
ues are channel indices

with_stats_transformer()
Add a stats transformer to the raster source.

with_transformer(transformer)
A transformer to be applied to the raster data.
Args:

transformer: A transformer to apply to the raster data.

with_transformers(transformers)
Transformers to be applied to the raster data.
Args:

transformers: A list of transformers to apply to the raster data.

with_uri(uri)
Set URI for a GeoTIFF containing raster data.

with_uris(uris)
Set URIs for a GeoTIFFs containing as raster data.

rv.IMAGE_SOURCE

class rastervision.data.ImageSourceConfigBuilder(prev=None)

build()
Returns the configuration that is built by this builder.

with_channel_order(channel_order)
Defines the channel order for this raster source.
Args:

channel_order: numpy array of length n where n is the number of channels to use and the val-
ues are channel indices

with_stats_transformer()
Add a stats transformer to the raster source.

with_transformer(transformer)
A transformer to be applied to the raster data.
Args:

transformer: A transformer to apply to the raster data.

13.1. API Reference 67

Raster Vision Documentation, Release 0.8.0

with_transformers(transformers)
Transformers to be applied to the raster data.
Args:

transformers: A list of transformers to apply to the raster data.

with_uri(uri)
Set URI for an image.
Args:

uri: A URI pointing to some (non-georeferenced) raster file (TIFs, PNGs, and JPEGs are sup-
ported, and possibly others).

rv.GEOJSON_SOURCE

class rastervision.data.GeoJSONSourceConfigBuilder(prev=None)

build()
Returns the configuration that is built by this builder.

with_channel_order(channel_order)
Defines the channel order for this raster source.
Args:

channel_order: numpy array of length n where n is the number of channels to use and the val-
ues are channel indices

with_rasterizer_options(background_class_id, line_buffer=15)
Specify options for converting GeoJSON to raster.
Args:

background_class_id: The class_id to use for background pixels that don’t overlap with any
shapes in the GeoJSON file.

line_buffer: Number of pixels to add to each side of line when rasterized.

with_stats_transformer()
Add a stats transformer to the raster source.

with_transformer(transformer)
A transformer to be applied to the raster data.
Args:

transformer: A transformer to apply to the raster data.

with_transformers(transformers)
Transformers to be applied to the raster data.
Args:

transformers: A list of transformers to apply to the raster data.

with_uri(uri)
Set URI for a GeoJSON file used to read labels.

13.1.7 LabelSourceConfig

LabelSourceConfigBuilders are created by calling

68 Chapter 13. API Reference

Raster Vision Documentation, Release 0.8.0

rv.LabelSourceConfig.builder(SOURCE_TYPE)

Where SOURCE_TYPE is one of the following:

rv.CHIP_CLASSIFICATION_GEOJSON

class rastervision.data.ChipClassificationGeoJSONSourceConfigBuilder(prev=None)

build()
Returns the configuration that is built by this builder.

with_background_class_id(background_class_id)
Sets the background class ID.

Optional class_id to use as the background class; ie. the one that is used when a window contains no
boxes. If not set, empty windows have None set as their class_id.

with_cell_size(cell_size)
Sets the cell size of the chips.

with_infer_cells(infer_cells)
Set if this label source should infer cells.

If true, the label source will infer the cell polygon and label from the polyongs of the GeoJSON. If the
labels are already cells and properly labeled, this can be False.

with_ioa_thresh(ioa_thresh)
The minimum IOA of a polygon and cell.

with_pick_min_class_id(pick_min_class_id)
Set this label source to pick min class ID

If true, the class_id for a cell is the minimum class_id of the boxes in that cell. Otherwise, pick the
class_id of the box covering the greatest area.

with_uri(uri)
Set URI for a GeoJSON used to read/write predictions.

with_use_intersection_over_cell(use_intersection_over_cell)
Set this label source to use intersection over cell or not.

If use_intersection_over_cell is true, then use the area of the cell as the denominator in the IOA. Otherwise,
use the area of the polygon.

For rv.OBJECT_DETECTION:

rv.OBJECT_DETECTION_GEOJSON

class rastervision.data.ObjectDetectionGeoJSONSourceConfigBuilder(prev=None)

build()
Returns the configuration that is built by this builder.

with_uri(uri)
Set URI for a GeoJSON used to read/write predictions.

13.1. API Reference 69

Raster Vision Documentation, Release 0.8.0

rv.SEMANTIC_SEGMENTATION_RASTER

class rastervision.data.SemanticSegmentationRasterSourceConfigBuilder(prev=None)

build()
Returns the configuration that is built by this builder.

with_raster_source(source, channel_order=None)
Set raster_source.
Args:

source: (RasterSourceConfig) A RasterSource assumed to have RGB values that are mapped
to class_ids using the rgb_class_map.

Returns: SemanticSegmentationRasterSourceConfigBuilder

with_rgb_class_map(rgb_class_map)
Set rgb_class_map.
Args:

rgb_class_map: (something accepted by ClassMap.construct_from) a class map with color
values used to map RGB values to class ids

Returns: SemanticSegmentationRasterSourceConfigBuilder

13.1.8 LabelStoreConfig

LabelStoreConfigBuilders are created by calling

rv.LabelStoreConfig.builder(STORE_TYPE)

Where STORE_TYPE is one of the following:

rv.CHIP_CLASSIFICATION_GEOJSON

class rastervision.data.ChipClassificationGeoJSONStoreConfigBuilder(prev=None)

build()
Returns the configuration that is built by this builder.

with_uri(uri)
Set URI for a GeoJSON used to read/write predictions.

For rv.OBJECT_DETECTION:

rv.OBJECT_DETECTION_GEOJSON

class rastervision.data.ObjectDetectionGeoJSONStoreConfigBuilder(prev=None)

build()
Returns the configuration that is built by this builder.

with_uri(uri)
Set URI for a GeoJSON used to read/write predictions.

70 Chapter 13. API Reference

Raster Vision Documentation, Release 0.8.0

rv.SEMANTIC_SEGMENTATION_RASTER

class rastervision.data.SemanticSegmentationRasterStoreConfigBuilder(prev=None)

build()
Returns the configuration that is built by this builder.

with_rgb(rgb)
Set flag for writing RGB data using the class map.

Otherwise this method will write the class ID into a single band.

with_uri(uri)
Set URI for a GeoTIFF used to read/write predictions.

13.1.9 RasterTransformerConfig

RasterTransformerConfigBuilders are created by calling

rv.RasterTransformerConfig.builder(TRANSFORMER_TYPE)

Where TRANSFORMER_TYPE is one of the following:

rv.STATS_TRANSFORMER

class rastervision.data.StatsTransformerConfigBuilder(prev=None)

build()
Returns the configuration that is built by this builder.

with_stats_uri(stats_uri)
Set the stats_uri.
Args: stats_uri: URI to the stats json to use

13.1.10 AugmentorConfig

AugmentorConfigBuilders are created by calling

rv.AugmentorConfig.builder(AUGMENTOR_TYPE)

Where AUGMENTOR_TYPE is one of the following:

rv.NODATA_AUGMENTOR

class rastervision.augmentor.NodataAugmentorConfigBuilder(prev=None)

build()
Returns the configuration that is built by this builder.

with_probability(aug_prob)
Sets the probability for this augmentation.

Determines how probable this augmentation will happen to negative chips.

13.1. API Reference 71

Raster Vision Documentation, Release 0.8.0

Args: aug_prob: Float value between 0.0 and 1.0

13.1.11 AnalyzerConfig

AnalyzerConfigBuilders are created by calling

rv.AnalyzerConfig.builder(ANALYZER_TYPE)

Where ANALYZER_TYPE is one of the following:

rv.STATS_ANALYZER

class rastervision.analyzer.StatsAnalyzerConfigBuilder(prev=None)

build()
Returns the configuration that is built by this builder.

with_stats_uri(stats_uri)
Set the stats_uri.
Args: stats_uri: URI to the stats json to use

13.1.12 EvaluatorConfig

EvaluatorConfigBuilders are created by calling

rv.EvaluatorConfig.builder(Evaluator_TYPE)

Where Evaluator_TYPE is one of the following:

rv.CHIP_CLASSIFICATION_EVALUATOR

class rastervision.evaluation.ChipClassificationEvaluatorConfigBuilder(prev=None)

build()
Returns the configuration that is built by this builder.

with_class_map(class_map)
Set the class map to be used for evaluation.
Args: class_map: The class map to be used

with_output_uri(output_uri)
Set the output_uri.
Args: output_uri: URI to the stats json to use

with_task(task)
Sets a specific task type, e.g. rv.OBJECT_DETECTION.

rv.OBJECT_DETECTION_EVALUATOR

class rastervision.evaluation.ObjectDetectionEvaluatorConfigBuilder(prev=None)

72 Chapter 13. API Reference

Raster Vision Documentation, Release 0.8.0

build()
Returns the configuration that is built by this builder.

with_class_map(class_map)
Set the class map to be used for evaluation.
Args: class_map: The class map to be used

with_output_uri(output_uri)
Set the output_uri.
Args: output_uri: URI to the stats json to use

with_task(task)
Sets a specific task type, e.g. rv.OBJECT_DETECTION.

rv.SEMANTIC_SEGMENTATION_EVALUATOR

class rastervision.evaluation.SemanticSegmentationEvaluatorConfigBuilder(prev=None)

build()
Returns the configuration that is built by this builder.

with_class_map(class_map)
Set the class map to be used for evaluation.
Args: class_map: The class map to be used

with_output_uri(output_uri)
Set the output_uri.
Args: output_uri: URI to the stats json to use

with_task(task)
Sets a specific task type, e.g. rv.OBJECT_DETECTION.

13.1.13 Predictor

class rastervision.Predictor(prediction_package_uri, tmp_dir, update_stats=False, chan-
nel_order=None)

Class for making predictions based off of a prediction package.

__init__(prediction_package_uri, tmp_dir, update_stats=False, channel_order=None)
Creates a new Predictor.
Args:

prediction_packaage_uri - The URI of the prediction package to use. Can be any type of URI
that Raster Vision can read.

tmp_dir - Temporary directory in which to store files that are used by the Predictor. This di-
rectory is not cleaned up by this class.

update_stats - Option indicating if any Analyzers should be run on the image to be predicted
on. Otherwise, the Predictor will use the output of Analyzers that are bundled with the predict
package. This is useful, for instance, if you are predicting against imagery that needs to be
normalized with a StatsAnalyzer, and the color profile of the new imagery is significantly
different then the imagery the model was trained on.

channel_order - Option indicating a new channel order to use for the imagery being pre-
dicted against. If not present, the channel_order from the original configuration in the predict
package will be used.

13.1. API Reference 73

Raster Vision Documentation, Release 0.8.0

load_model()
Load the model for this Predictor.

This is useful if you are going to make multiple predictions with the model, and want it to be fast on the
first prediction.
Note: This is called implicitly on the first call of ‘predict’ if it hasn’t been called already.

predict(image_uri, label_uri=None, config_uri=None)
Generate predictions for the given image.
Args:

image_uri - URI of the image to make predictions against. This can be any type of URI read-
able by Raster Vision FileSystems.

label_uri - Optional URI to save labels off into. config_uri - Optional URI in which to save the
bundle_config,

which can be useful to client applications for understanding how to interpret the labels.

Returns: rastervision.data.labels.Labels containing the predicted labels.

13.1.14 Plugin Registry

class rastervision.plugin.PluginRegistry(plugin_config, rv_home)

register_config_builder(group, key, builder_class)
Registers a ConfigBuilder as a plugin.
Args: group - The Config group, e.g. rv.BACKEND, rv.TASK. key - The key used for this plugin. This

will be used to

construct the builder in a “.builder(key)” call.

builder_class - The subclass of ConfigBuilder that builds the Config for this plugin.

register_default_evaluator(provider_class)
Registers an EvaluatorDefaultProvider for use as a plugin.

register_default_label_source(provider_class)
Registers a LabelSourceDefaultProvider for use as a plugin.

register_default_label_store(provider_class)
Registers a LabelStoreDefaultProvider for use as a plugin.

register_default_raster_source(provider_class)
Registers a RasterSourceDefaultProvider for use as a plugin.

register_experiment_runner(runner_key, runner_class)
Registers an ExperimentRunner as a plugin.
Args:

runner_key - The key used to reference this plugin runner. This is a string that will match the
command line argument used to reference this runner; e.g. if the key is “FOO_RUNNER”,
then users can use the runner by issuing a “rastervision run foo_runner . . . ” command.

runner_class - The class of the ExperimentRunner plugin.

register_filesystem(filesystem_class)
Registers a FileSystem as a plugin.

74 Chapter 13. API Reference

Python Module Index

r
rastervision, 57

75

Raster Vision Documentation, Release 0.8.0

76 Python Module Index

Index

Symbols
__init__() (rastervision.Predictor method), 73

B
build() (rastervision.analyzer.StatsAnalyzerConfigBuilder

method), 72
build() (rastervision.augmentor.NodataAugmentorConfigBuilder

method), 71
build() (rastervision.backend.KerasClassificationConfigBuilder

method), 62
build() (rastervision.backend.TFDeeplabConfigBuilder

method), 64
build() (rastervision.backend.TFObjectDetectionConfigBuilder

method), 63
build() (rastervision.data.ChipClassificationGeoJSONSourceConfigBuilder

method), 69
build() (rastervision.data.ChipClassificationGeoJSONStoreConfigBuilder

method), 70
build() (rastervision.data.DatasetConfigBuilder

method), 59
build() (rastervision.data.GeoJSONSourceConfigBuilder

method), 68
build() (rastervision.data.GeoTiffSourceConfigBuilder

method), 67
build() (rastervision.data.ImageSourceConfigBuilder

method), 67
build() (rastervision.data.ObjectDetectionGeoJSONSourceConfigBuilder

method), 69
build() (rastervision.data.ObjectDetectionGeoJSONStoreConfigBuilder

method), 70
build() (rastervision.data.SceneConfigBuilder

method), 66
build() (rastervision.data.SemanticSegmentationRasterSourceConfigBuilder

method), 70
build() (rastervision.data.SemanticSegmentationRasterStoreConfigBuilder

method), 71
build() (rastervision.data.StatsTransformerConfigBuilder

method), 71
build() (rastervision.evaluation.ChipClassificationEvaluatorConfigBuilder

method), 72
build() (rastervision.evaluation.ObjectDetectionEvaluatorConfigBuilder

method), 72
build() (rastervision.evaluation.SemanticSegmentationEvaluatorConfigBuilder

method), 73
build() (rastervision.experiment.ExperimentConfigBuilder

method), 57
build() (rastervision.task.ChipClassificationConfigBuilder

method), 59
build() (rastervision.task.ObjectDetectionConfigBuilder

method), 60
build() (rastervision.task.SemanticSegmentationConfigBuilder

method), 61

C
ChipClassificationConfigBuilder (class in

rastervision.task), 59
ChipClassificationEvaluatorConfigBuilder

(class in rastervision.evaluation), 72
ChipClassificationGeoJSONSourceConfigBuilder

(class in rastervision.data), 69
ChipClassificationGeoJSONStoreConfigBuilder

(class in rastervision.data), 70
clear_label_source() (rastervi-

sion.data.SceneConfigBuilder method), 66
clear_label_store() (rastervi-

sion.data.SceneConfigBuilder method), 66

D
DatasetConfigBuilder (class in rastervi-

sion.data), 59

E
ExperimentConfigBuilder (class in rastervi-

sion.experiment), 57

G
GeoJSONSourceConfigBuilder (class in rastervi-

sion.data), 68

77

Raster Vision Documentation, Release 0.8.0

GeoTiffSourceConfigBuilder (class in rastervi-
sion.data), 67

I
ImageSourceConfigBuilder (class in rastervi-

sion.data), 67

K
KerasClassificationConfigBuilder (class in

rastervision.backend), 62

L
load_model() (rastervision.Predictor method), 73

N
NodataAugmentorConfigBuilder (class in

rastervision.augmentor), 71

O
ObjectDetectionConfigBuilder (class in

rastervision.task), 60
ObjectDetectionEvaluatorConfigBuilder

(class in rastervision.evaluation), 72
ObjectDetectionGeoJSONSourceConfigBuilder

(class in rastervision.data), 69
ObjectDetectionGeoJSONStoreConfigBuilder

(class in rastervision.data), 70

P
PluginRegistry (class in rastervision.plugin), 74
predict() (rastervision.Predictor method), 74
Predictor (class in rastervision), 73

R
rastervision (module), 57
register_config_builder() (rastervi-

sion.plugin.PluginRegistry method), 74
register_default_evaluator() (rastervi-

sion.plugin.PluginRegistry method), 74
register_default_label_source() (rastervi-

sion.plugin.PluginRegistry method), 74
register_default_label_store() (rastervi-

sion.plugin.PluginRegistry method), 74
register_default_raster_source() (raster-

vision.plugin.PluginRegistry method), 74
register_experiment_runner() (rastervi-

sion.plugin.PluginRegistry method), 74
register_filesystem() (rastervi-

sion.plugin.PluginRegistry method), 74

S
SceneConfigBuilder (class in rastervision.data),

66

SemanticSegmentationConfigBuilder (class
in rastervision.task), 61

SemanticSegmentationEvaluatorConfigBuilder
(class in rastervision.evaluation), 73

SemanticSegmentationRasterSourceConfigBuilder
(class in rastervision.data), 70

SemanticSegmentationRasterStoreConfigBuilder
(class in rastervision.data), 71

StatsAnalyzerConfigBuilder (class in rastervi-
sion.analyzer), 72

StatsTransformerConfigBuilder (class in
rastervision.data), 71

T
TFDeeplabConfigBuilder (class in rastervi-

sion.backend), 64
TFObjectDetectionConfigBuilder (class in

rastervision.backend), 63

W
with_analyze_key() (rastervi-

sion.experiment.ExperimentConfigBuilder
method), 57

with_analyze_uri() (rastervi-
sion.experiment.ExperimentConfigBuilder
method), 57

with_analyzer() (rastervi-
sion.experiment.ExperimentConfigBuilder
method), 57

with_analyzers() (rastervi-
sion.experiment.ExperimentConfigBuilder
method), 57

with_aoi_uri() (rastervi-
sion.data.SceneConfigBuilder method), 66

with_augmentor() (rastervi-
sion.data.DatasetConfigBuilder method),
59

with_augmentors() (rastervi-
sion.data.DatasetConfigBuilder method),
59

with_backend() (rastervi-
sion.experiment.ExperimentConfigBuilder
method), 58

with_background_class_id() (rastervi-
sion.data.ChipClassificationGeoJSONSourceConfigBuilder
method), 69

with_batch_size() (rastervi-
sion.backend.KerasClassificationConfigBuilder
method), 62

with_batch_size() (rastervi-
sion.backend.TFDeeplabConfigBuilder
method), 64

with_batch_size() (rastervi-
sion.backend.TFObjectDetectionConfigBuilder

78 Index

Raster Vision Documentation, Release 0.8.0

method), 63
with_bundle_key() (rastervi-

sion.experiment.ExperimentConfigBuilder
method), 58

with_bundle_uri() (rastervi-
sion.experiment.ExperimentConfigBuilder
method), 58

with_cell_size() (rastervi-
sion.data.ChipClassificationGeoJSONSourceConfigBuilder
method), 69

with_channel_order() (rastervi-
sion.data.GeoJSONSourceConfigBuilder
method), 68

with_channel_order() (rastervi-
sion.data.GeoTiffSourceConfigBuilder
method), 67

with_channel_order() (rastervi-
sion.data.ImageSourceConfigBuilder method),
67

with_chip_key() (rastervi-
sion.experiment.ExperimentConfigBuilder
method), 58

with_chip_options() (rastervi-
sion.task.ObjectDetectionConfigBuilder
method), 60

with_chip_options() (rastervi-
sion.task.SemanticSegmentationConfigBuilder
method), 61

with_chip_size() (rastervi-
sion.task.ChipClassificationConfigBuilder
method), 59

with_chip_size() (rastervi-
sion.task.ObjectDetectionConfigBuilder
method), 61

with_chip_size() (rastervi-
sion.task.SemanticSegmentationConfigBuilder
method), 62

with_chip_uri() (rastervi-
sion.experiment.ExperimentConfigBuilder
method), 58

with_class_map() (rastervi-
sion.evaluation.ChipClassificationEvaluatorConfigBuilder
method), 72

with_class_map() (rastervi-
sion.evaluation.ObjectDetectionEvaluatorConfigBuilder
method), 73

with_class_map() (rastervi-
sion.evaluation.SemanticSegmentationEvaluatorConfigBuilder
method), 73

with_classes() (rastervi-
sion.task.ChipClassificationConfigBuilder
method), 59

with_classes() (rastervi-
sion.task.ObjectDetectionConfigBuilder

method), 61
with_classes() (rastervi-

sion.task.SemanticSegmentationConfigBuilder
method), 62

with_config() (rastervi-
sion.backend.KerasClassificationConfigBuilder
method), 62

with_config() (rastervi-
sion.backend.TFDeeplabConfigBuilder
method), 65

with_config() (rastervi-
sion.backend.TFObjectDetectionConfigBuilder
method), 63

with_dataset() (rastervi-
sion.experiment.ExperimentConfigBuilder
method), 58

with_debug() (rastervi-
sion.backend.KerasClassificationConfigBuilder
method), 62

with_debug() (rastervi-
sion.backend.TFDeeplabConfigBuilder
method), 65

with_debug() (rastervi-
sion.backend.TFObjectDetectionConfigBuilder
method), 63

with_debug() (rastervi-
sion.task.ChipClassificationConfigBuilder
method), 60

with_debug() (rastervi-
sion.task.ObjectDetectionConfigBuilder
method), 61

with_debug() (rastervi-
sion.task.SemanticSegmentationConfigBuilder
method), 62

with_eval_key() (rastervi-
sion.experiment.ExperimentConfigBuilder
method), 58

with_eval_uri() (rastervi-
sion.experiment.ExperimentConfigBuilder
method), 58

with_evaluator() (rastervi-
sion.experiment.ExperimentConfigBuilder
method), 58

with_evaluators() (rastervi-
sion.experiment.ExperimentConfigBuilder
method), 58

with_fine_tune_checkpoint_name() (raster-
vision.backend.TFDeeplabConfigBuilder
method), 65

with_fine_tune_checkpoint_name() (raster-
vision.backend.TFObjectDetectionConfigBuilder
method), 64

with_id() (rastervision.data.SceneConfigBuilder
method), 66

Index 79

Raster Vision Documentation, Release 0.8.0

with_id() (rastervi-
sion.experiment.ExperimentConfigBuilder
method), 58

with_infer_cells() (rastervi-
sion.data.ChipClassificationGeoJSONSourceConfigBuilder
method), 69

with_ioa_thresh() (rastervi-
sion.data.ChipClassificationGeoJSONSourceConfigBuilder
method), 69

with_label_source() (rastervi-
sion.data.SceneConfigBuilder method), 66

with_label_store() (rastervi-
sion.data.SceneConfigBuilder method), 66

with_model_defaults() (rastervi-
sion.backend.KerasClassificationConfigBuilder
method), 63

with_model_defaults() (rastervi-
sion.backend.TFDeeplabConfigBuilder
method), 65

with_model_defaults() (rastervi-
sion.backend.TFObjectDetectionConfigBuilder
method), 64

with_model_uri() (rastervi-
sion.backend.KerasClassificationConfigBuilder
method), 63

with_model_uri() (rastervi-
sion.backend.TFDeeplabConfigBuilder
method), 65

with_model_uri() (rastervi-
sion.backend.TFObjectDetectionConfigBuilder
method), 64

with_num_epochs() (rastervi-
sion.backend.KerasClassificationConfigBuilder
method), 63

with_num_steps() (rastervi-
sion.backend.TFDeeplabConfigBuilder
method), 65

with_num_steps() (rastervi-
sion.backend.TFObjectDetectionConfigBuilder
method), 64

with_output_uri() (rastervi-
sion.evaluation.ChipClassificationEvaluatorConfigBuilder
method), 72

with_output_uri() (rastervi-
sion.evaluation.ObjectDetectionEvaluatorConfigBuilder
method), 73

with_output_uri() (rastervi-
sion.evaluation.SemanticSegmentationEvaluatorConfigBuilder
method), 73

with_pick_min_class_id() (rastervi-
sion.data.ChipClassificationGeoJSONSourceConfigBuilder
method), 69

with_predict_batch_size() (rastervi-
sion.task.ChipClassificationConfigBuilder

method), 60
with_predict_batch_size() (rastervi-

sion.task.ObjectDetectionConfigBuilder
method), 61

with_predict_batch_size() (rastervi-
sion.task.SemanticSegmentationConfigBuilder
method), 62

with_predict_debug_uri() (rastervi-
sion.task.ChipClassificationConfigBuilder
method), 60

with_predict_debug_uri() (rastervi-
sion.task.ObjectDetectionConfigBuilder
method), 61

with_predict_debug_uri() (rastervi-
sion.task.SemanticSegmentationConfigBuilder
method), 62

with_predict_key() (rastervi-
sion.experiment.ExperimentConfigBuilder
method), 58

with_predict_options() (rastervi-
sion.task.ObjectDetectionConfigBuilder
method), 61

with_predict_package_uri() (rastervi-
sion.task.ChipClassificationConfigBuilder
method), 60

with_predict_package_uri() (rastervi-
sion.task.ObjectDetectionConfigBuilder
method), 61

with_predict_package_uri() (rastervi-
sion.task.SemanticSegmentationConfigBuilder
method), 62

with_predict_uri() (rastervi-
sion.experiment.ExperimentConfigBuilder
method), 58

with_pretrained_model() (rastervi-
sion.backend.KerasClassificationConfigBuilder
method), 63

with_pretrained_model() (rastervi-
sion.backend.TFDeeplabConfigBuilder
method), 65

with_pretrained_model() (rastervi-
sion.backend.TFObjectDetectionConfigBuilder
method), 64

with_probability() (rastervi-
sion.augmentor.NodataAugmentorConfigBuilder
method), 71

with_raster_source() (rastervi-
sion.data.SceneConfigBuilder method), 66

with_raster_source() (rastervi-
sion.data.SemanticSegmentationRasterSourceConfigBuilder
method), 70

with_rasterizer_options() (rastervi-
sion.data.GeoJSONSourceConfigBuilder
method), 68

80 Index

Raster Vision Documentation, Release 0.8.0

with_rgb() (rastervi-
sion.data.SemanticSegmentationRasterStoreConfigBuilder
method), 71

with_rgb_class_map() (rastervi-
sion.data.SemanticSegmentationRasterSourceConfigBuilder
method), 70

with_root_uri() (rastervi-
sion.experiment.ExperimentConfigBuilder
method), 58

with_script_locations() (rastervi-
sion.backend.TFDeeplabConfigBuilder
method), 65

with_script_locations() (rastervi-
sion.backend.TFObjectDetectionConfigBuilder
method), 64

with_stats_analyzer() (rastervi-
sion.experiment.ExperimentConfigBuilder
method), 58

with_stats_transformer() (rastervi-
sion.data.GeoJSONSourceConfigBuilder
method), 68

with_stats_transformer() (rastervi-
sion.data.GeoTiffSourceConfigBuilder
method), 67

with_stats_transformer() (rastervi-
sion.data.ImageSourceConfigBuilder method),
67

with_stats_uri() (rastervi-
sion.analyzer.StatsAnalyzerConfigBuilder
method), 72

with_stats_uri() (rastervi-
sion.data.StatsTransformerConfigBuilder
method), 71

with_task() (rastervi-
sion.backend.KerasClassificationConfigBuilder
method), 63

with_task() (rastervi-
sion.backend.TFDeeplabConfigBuilder
method), 65

with_task() (rastervi-
sion.backend.TFObjectDetectionConfigBuilder
method), 64

with_task() (rastervision.data.SceneConfigBuilder
method), 66

with_task() (rastervi-
sion.evaluation.ChipClassificationEvaluatorConfigBuilder
method), 72

with_task() (rastervi-
sion.evaluation.ObjectDetectionEvaluatorConfigBuilder
method), 73

with_task() (rastervi-
sion.evaluation.SemanticSegmentationEvaluatorConfigBuilder
method), 73

with_task() (rastervi-

sion.experiment.ExperimentConfigBuilder
method), 58

with_template() (rastervi-
sion.backend.KerasClassificationConfigBuilder
method), 63

with_template() (rastervi-
sion.backend.TFDeeplabConfigBuilder
method), 65

with_template() (rastervi-
sion.backend.TFObjectDetectionConfigBuilder
method), 64

with_test_scene() (rastervi-
sion.data.DatasetConfigBuilder method),
59

with_test_scenes() (rastervi-
sion.data.DatasetConfigBuilder method),
59

with_train_key() (rastervi-
sion.experiment.ExperimentConfigBuilder
method), 58

with_train_options() (rastervi-
sion.backend.KerasClassificationConfigBuilder
method), 63

with_train_options() (rastervi-
sion.backend.TFDeeplabConfigBuilder
method), 65

with_train_options() (rastervi-
sion.backend.TFObjectDetectionConfigBuilder
method), 64

with_train_scene() (rastervi-
sion.data.DatasetConfigBuilder method),
59

with_train_scenes() (rastervi-
sion.data.DatasetConfigBuilder method),
59

with_train_uri() (rastervi-
sion.experiment.ExperimentConfigBuilder
method), 58

with_training_data_uri() (rastervi-
sion.backend.KerasClassificationConfigBuilder
method), 63

with_training_data_uri() (rastervi-
sion.backend.TFDeeplabConfigBuilder
method), 65

with_training_data_uri() (rastervi-
sion.backend.TFObjectDetectionConfigBuilder
method), 64

with_training_output_uri() (rastervi-
sion.backend.KerasClassificationConfigBuilder
method), 63

with_training_output_uri() (rastervi-
sion.backend.TFDeeplabConfigBuilder
method), 65

with_training_output_uri() (rastervi-

Index 81

Raster Vision Documentation, Release 0.8.0

sion.backend.TFObjectDetectionConfigBuilder
method), 64

with_transformer() (rastervi-
sion.data.GeoJSONSourceConfigBuilder
method), 68

with_transformer() (rastervi-
sion.data.GeoTiffSourceConfigBuilder
method), 67

with_transformer() (rastervi-
sion.data.ImageSourceConfigBuilder method),
67

with_transformers() (rastervi-
sion.data.GeoJSONSourceConfigBuilder
method), 68

with_transformers() (rastervi-
sion.data.GeoTiffSourceConfigBuilder
method), 67

with_transformers() (rastervi-
sion.data.ImageSourceConfigBuilder method),
68

with_uri() (rastervi-
sion.data.ChipClassificationGeoJSONSourceConfigBuilder
method), 69

with_uri() (rastervi-
sion.data.ChipClassificationGeoJSONStoreConfigBuilder
method), 70

with_uri() (rastervi-
sion.data.GeoJSONSourceConfigBuilder
method), 68

with_uri() (rastervi-
sion.data.GeoTiffSourceConfigBuilder
method), 67

with_uri() (rastervi-
sion.data.ImageSourceConfigBuilder method),
68

with_uri() (rastervi-
sion.data.ObjectDetectionGeoJSONSourceConfigBuilder
method), 69

with_uri() (rastervi-
sion.data.ObjectDetectionGeoJSONStoreConfigBuilder
method), 70

with_uri() (rastervi-
sion.data.SemanticSegmentationRasterStoreConfigBuilder
method), 71

with_uris() (rastervi-
sion.data.GeoTiffSourceConfigBuilder
method), 67

with_use_intersection_over_cell()
(rastervision.data.ChipClassificationGeoJSONSourceConfigBuilder
method), 69

with_validation_scene() (rastervi-
sion.data.DatasetConfigBuilder method),
59

with_validation_scenes() (rastervi-

sion.data.DatasetConfigBuilder method),
59

82 Index

	Why Raster Vision?
	Why do we need yet another deep learning library?
	What are the benefits of Raster Vision?
	Who is Raster Vision for?

	Quickstart
	The Data
	Creating an ExperimentSet
	Running an experiment
	Seeing Results
	Predict Packages
	Next Steps

	Setup
	Installing Raster Vision
	Raster Vision Configuration
	Docker Containers
	Running on a machine with GPUs
	Setting up AWS Batch

	Experiment Configuration
	Experiment Set
	ExperimentConfig
	Task
	Backend
	Dataset
	Scene
	Analyzers
	Evaluators
	Default Providers

	Commands
	Command Types

	Running Experiments
	ExperimentRunners
	Running locally
	Running on AWS Batch

	Making Predictions (Inference)
	How to make predictions with models train by Raster Vision
	Predict Package

	Command Line Interface
	Commands

	Miscellaneous Topics
	FileSystems
	Viewing Tensorboard
	Model Defaults
	Reusing models trained by Raster Vision

	Codebase Design Patterns
	Configuration vs Entity
	Fluent Builder Pattern
	Global Registry

	Plugins
	Creating Plugins
	Registering the Plugin
	Configuring Raster Vision to use your Plugins
	Plugins in remote environments
	Example Plugin

	QGIS Plugin
	Installing
	Load Experiment
	Predict
	Style Profiles
	Configure

	API Reference
	API Reference

	Python Module Index

