_images/raster-vision-logo-index.png

Raster Vision is an open source framework for Python developers building computer vision models on satellite, aerial, and other large imagery sets (including oblique drone imagery). There is built-in support for chip classification, object detection, and semantic segmentation using PyTorch.

_images/cv-tasks.png

Raster Vision allows engineers to quickly and repeatably configure pipelines that go through core components of a machine learning workflow: analyzing training data, creating training chips, training models, creating predictions, evaluating models, and bundling the model files and configuration for easy deployment.

_images/rv-pipeline-overview.png

The input to a Raster Vision pipeline is a set of images and training data, optionally with Areas of Interest (AOIs) that describe where the images are labeled. The output of a Raster Vision pipeline is a model bundle that allows you to easily utilize models in various deployment scenarios.

The pipelines include running the following commands:

  • ANALYZE: Gather dataset-level statistics and metrics for use in downstream processes.

  • CHIP: Create training chips from a variety of image and label sources.

  • TRAIN: Train a model using a “backend” such as PyTorch.

  • PREDICT: Make predictions using trained models on validation and test data.

  • EVAL: Derive evaluation metrics such as F1 score, precision and recall against the model’s predictions on validation datasets.

  • BUNDLE: Bundle the trained model and associated configuration into a model bundle, which can be deployed in batch processes, live servers, and other workflows.

Pipelines are configured using a compositional, programmatic approach that makes configuration easy to read, reuse, and maintain. Below, we show the tiny_spacenet example.

tiny_spacenet.py
# flake8: noqa

from rastervision.core.rv_pipeline import *
from rastervision.core.backend import *
from rastervision.core.data import *
from rastervision.pytorch_backend import *
from rastervision.pytorch_learner import *


def get_config(runner) -> SemanticSegmentationConfig:
    root_uri = '/opt/data/output/'
    base_uri = ('https://s3.amazonaws.com/azavea-research-public-data/'
                'raster-vision/examples/spacenet')

    train_image_uri = f'{base_uri}/RGB-PanSharpen_AOI_2_Vegas_img205.tif'
    train_label_uri = f'{base_uri}/buildings_AOI_2_Vegas_img205.geojson'
    val_image_uri = f'{base_uri}/RGB-PanSharpen_AOI_2_Vegas_img25.tif'
    val_label_uri = f'{base_uri}/buildings_AOI_2_Vegas_img25.geojson'

    channel_order = [0, 1, 2]
    class_config = ClassConfig(
        names=['building', 'background'], colors=['red', 'black'])

    def make_scene(scene_id: str, image_uri: str,
                   label_uri: str) -> SceneConfig:
        """
        - The GeoJSON does not have a class_id property for each geom,
          so it is inferred as 0 (ie. building) because the default_class_id
          is set to 0.
        - The labels are in the form of GeoJSON which needs to be rasterized
          to use as label for semantic segmentation, so we use a RasterizedSource.
        - The rasterizer set the background (as opposed to foreground) pixels
          to 1 because background_class_id is set to 1.
        """
        raster_source = RasterioSourceConfig(
            uris=[image_uri], channel_order=channel_order)
        vector_source = GeoJSONVectorSourceConfig(
            uri=label_uri, default_class_id=0, ignore_crs_field=True)
        label_source = SemanticSegmentationLabelSourceConfig(
            raster_source=RasterizedSourceConfig(
                vector_source=vector_source,
                rasterizer_config=RasterizerConfig(background_class_id=1)))
        return SceneConfig(
            id=scene_id,
            raster_source=raster_source,
            label_source=label_source)

    scene_dataset = DatasetConfig(
        class_config=class_config,
        train_scenes=[
            make_scene('scene_205', train_image_uri, train_label_uri)
        ],
        validation_scenes=[
            make_scene('scene_25', val_image_uri, val_label_uri)
        ])

    # Use the PyTorch backend for the SemanticSegmentation pipeline.
    chip_sz = 300

    backend = PyTorchSemanticSegmentationConfig(
        data=SemanticSegmentationGeoDataConfig(
            scene_dataset=scene_dataset,
            window_opts=GeoDataWindowConfig(
                method=GeoDataWindowMethod.random,
                size=chip_sz,
                size_lims=(chip_sz, chip_sz + 1),
                max_windows=10)),
        model=SemanticSegmentationModelConfig(backbone=Backbone.resnet50),
        solver=SolverConfig(lr=1e-4, num_epochs=1, batch_sz=2))

    return SemanticSegmentationConfig(
        root_uri=root_uri,
        dataset=scene_dataset,
        backend=backend,
        train_chip_sz=chip_sz,
        predict_chip_sz=chip_sz)

Raster Vision uses a unittest-like method for executing pipelines. For instance, if the above was defined in tiny_spacenet.py, with the proper setup you could run the experiment on AWS Batch by running:

> rastervision run batch tiny_spacenet.py

See the Quickstart for a more complete description of using this example.

Documentation

This part of the documentation guides you through all of the library’s usage patterns.

Configuration API