ObjectDetectionLabelSourceConfig#
Note
All Configs are derived from rastervision.pipeline.config.Config
, which itself is a pydantic Model.
- pydantic model ObjectDetectionLabelSourceConfig[source]#
Configure an
ObjectDetectionLabelSource
.Show JSON schema
{ "title": "ObjectDetectionLabelSourceConfig", "description": "Configure an :class:`.ObjectDetectionLabelSource`.", "type": "object", "properties": { "type_hint": { "const": "object_detection_label_source", "default": "object_detection_label_source", "enum": [ "object_detection_label_source" ], "title": "Type Hint", "type": "string" }, "vector_source": { "$ref": "#/$defs/VectorSourceConfig" } }, "$defs": { "VectorSourceConfig": { "additionalProperties": false, "description": "Configure a :class:`.VectorSource`.", "properties": { "transformers": { "default": [], "description": "List of VectorTransformers.", "items": { "$ref": "#/$defs/VectorTransformerConfig" }, "title": "Transformers", "type": "array" }, "type_hint": { "const": "vector_source", "default": "vector_source", "enum": [ "vector_source" ], "title": "Type Hint", "type": "string" } }, "title": "VectorSourceConfig", "type": "object" }, "VectorTransformerConfig": { "additionalProperties": false, "description": "Configure a :class:`.VectorTransformer`.", "properties": { "type_hint": { "const": "vector_transformer", "default": "vector_transformer", "enum": [ "vector_transformer" ], "title": "Type Hint", "type": "string" } }, "title": "VectorTransformerConfig", "type": "object" } }, "additionalProperties": false, "required": [ "vector_source" ] }
- Config:
extra: str = forbid
validate_assignment: bool = True
- Fields:
- Validators:
- field vector_source: VectorSourceConfig [Required]#
- Validated by:
- build(class_config, crs_transformer, bbox, tmp_dir=None) ObjectDetectionLabelSource [source]#
Build an instance of the corresponding type of object using this config.
For example, BackendConfig will build a Backend object. The arguments to this method will vary depending on the type of Config.
- Return type:
- classmethod deserialize(inp: str | dict | Config) Self #
Deserialize Config from a JSON file or dict, upgrading if possible.
If
inp
is already aConfig
, it is returned as is.
- validator ensure_required_transformers » vector_source[source]#
Add class-inference and buffer transformers if absent.
- Parameters:
v (VectorSourceConfig) –
- Return type:
- classmethod from_dict(cfg_dict: dict) Self #
Deserialize Config from a dict.
- Parameters:
cfg_dict (dict) – Dict to deserialize.
- Return type:
Self
- classmethod from_file(uri: str) Self #
Deserialize Config from a JSON file, upgrading if possible.
- Parameters:
uri (str) – URI to load from.
- Return type:
Self
- recursive_validate_config()#
Recursively validate hierarchies of Configs.
This uses reflection to call validate_config on a hierarchy of Configs using a depth-first pre-order traversal.
- revalidate()#
Re-validate an instantiated Config.
Runs all Pydantic validators plus self.validate_config().
- to_file(uri: str, with_rv_metadata: bool = True) None #
Save a Config to a JSON file, optionally with RV metadata.
- update(pipeline=None, scene=None)[source]#
Update any fields before validation.
Subclasses should override this to provide complex default behavior, for example, setting default values as a function of the values of other fields. The arguments to this method will vary depending on the type of Config.
- validate_config()#
Validate fields that should be checked after update is called.
This is to complement the builtin validation that Pydantic performs at the time of object construction.