StatsTransformerConfig#
Note
All Configs are derived from rastervision.pipeline.config.Config
, which itself is a pydantic Model.
- pydantic model StatsTransformerConfig[source]#
Configure a
StatsTransformer
.Show JSON schema
{ "title": "StatsTransformerConfig", "description": "Configure a :class:`.StatsTransformer`.", "type": "object", "properties": { "type_hint": { "const": "stats_transformer", "default": "stats_transformer", "title": "Type Hint", "type": "string" }, "stats_uri": { "anyOf": [ { "type": "string" }, { "type": "null" } ], "default": null, "description": "The URI of the output of the StatsAnalyzer. If None, and this Config is inside an RVPipeline, this field will be auto-generated.", "title": "Stats Uri" }, "scene_group": { "default": "train_scenes", "description": "Name of the group of scenes whose stats to use. Defaultsto \"train_scenes\".", "title": "Scene Group", "type": "string" }, "needs_channel_order": { "default": false, "description": "Whether the means and stds in the stats_uri file need to be re-ordered/subsetted using ``channel_order`` to be compatible with the chips that will be passed to the :class:`.StatsTransformer` by the :class:`.RasterSource`. This field exists for backward compatibility with Raster Vision versions <= 0.30. It will be set automatically when loading stats from older model-bundles.", "title": "Needs Channel Order", "type": "boolean" } }, "additionalProperties": false }
- Config:
extra: str = forbid
validate_assignment: bool = True
- Fields:
- field needs_channel_order: bool = False#
Whether the means and stds in the stats_uri file need to be re-ordered/subsetted using
channel_order
to be compatible with the chips that will be passed to theStatsTransformer
by theRasterSource
. This field exists for backward compatibility with Raster Vision versions <= 0.30. It will be set automatically when loading stats from older model-bundles.
- field scene_group: str = 'train_scenes'#
Name of the group of scenes whose stats to use. Defaultsto “train_scenes”.
- field stats_uri: str | None = None#
The URI of the output of the StatsAnalyzer. If None, and this Config is inside an RVPipeline, this field will be auto-generated.
- build(channel_order: list[int] | None = None) StatsTransformer [source]#
Build an instance of the corresponding type of object using this config.
For example, BackendConfig will build a Backend object. The arguments to this method will vary depending on the type of Config.
- Parameters:
- Return type:
- classmethod deserialize(inp: str | dict | Config) Self #
Deserialize Config from a JSON file or dict, upgrading if possible.
If
inp
is already aConfig
, it is returned as is.
- classmethod from_dict(cfg_dict: dict) Self #
Deserialize Config from a dict.
- Parameters:
cfg_dict (dict) – Dict to deserialize.
- Return type:
Self
- classmethod from_file(uri: str) Self #
Deserialize Config from a JSON file, upgrading if possible.
- Parameters:
uri (str) – URI to load from.
- Return type:
Self
- recursive_validate_config()#
Recursively validate hierarchies of Configs.
This uses reflection to call validate_config on a hierarchy of Configs using a depth-first pre-order traversal.
- revalidate()#
Re-validate an instantiated Config.
Runs all Pydantic validators plus self.validate_config().
- to_file(uri: str, with_rv_metadata: bool = True) None #
Save a Config to a JSON file, optionally with RV metadata.
- update(pipeline: RVPipelineConfig | None = None, scene: SceneConfig | None = None) None [source]#
Update any fields before validation.
Subclasses should override this to provide complex default behavior, for example, setting default values as a function of the values of other fields. The arguments to this method will vary depending on the type of Config.
- Parameters:
pipeline (RVPipelineConfig | None) –
scene (SceneConfig | None) –
- Return type:
None
- validate_config()#
Validate fields that should be checked after update is called.
This is to complement the builtin validation that Pydantic performs at the time of object construction.