ClassInferenceTransformerConfig#
Note
All Configs are derived from rastervision.pipeline.config.Config
, which itself is a pydantic Model.
- pydantic model ClassInferenceTransformerConfig[source]#
Configure a
ClassInferenceTransformer
.Show JSON schema
{ "title": "ClassInferenceTransformerConfig", "description": "Configure a :class:`.ClassInferenceTransformer`.", "type": "object", "properties": { "type_hint": { "const": "class_inference_transformer", "default": "class_inference_transformer", "enum": [ "class_inference_transformer" ], "title": "Type Hint", "type": "string" }, "default_class_id": { "anyOf": [ { "type": "integer" }, { "type": "null" } ], "default": null, "description": "The default ``class_id`` to use if class cannot be inferred using other mechanisms. If a feature has an inferred ``class_id`` of ``None``, then it will be deleted. Defaults to ``None``.", "title": "Default Class Id" }, "class_id_to_filter": { "anyOf": [ { "additionalProperties": { "items": {}, "type": "array" }, "type": "object" }, { "type": "null" } ], "default": null, "description": "Map from ``class_id`` to JSON filter used to infer missing class IDs. Each key should be a class ID, and its value should be a boolean expression which is run against the property field for each feature. This allows matching different features to different class IDs based on its properties. The expression schema is that described by https://docs.mapbox.com/mapbox-gl-js/style-spec/other/#other-filter. Defaults to ``None``.", "title": "Class Id To Filter" }, "class_name_mapping": { "anyOf": [ { "additionalProperties": { "type": "string" }, "type": "object" }, { "type": "null" } ], "default": null, "description": "``old_name --> new_name`` mapping for values in the ``class_name`` or ``label`` property of the GeoJSON features. The ``new_name`` must be a valid class name in the ``ClassConfig``. This can also be used to merge multiple classes into one e.g.: ``dict(car=\"vehicle\", truck=\"vehicle\")``. Defaults to None.", "title": "Class Name Mapping" } }, "additionalProperties": false }
- Config:
extra: str = forbid
validate_assignment: bool = True
- Fields:
- field class_id_to_filter: dict[int, list] | None = None#
Map from
class_id
to JSON filter used to infer missing class IDs. Each key should be a class ID, and its value should be a boolean expression which is run against the property field for each feature. This allows matching different features to different class IDs based on its properties. The expression schema is that described by https://docs.mapbox.com/mapbox-gl-js/style-spec/other/#other-filter. Defaults toNone
.
- field class_name_mapping: dict[str, str] | None = None#
old_name --> new_name
mapping for values in theclass_name
orlabel
property of the GeoJSON features. Thenew_name
must be a valid class name in theClassConfig
. This can also be used to merge multiple classes into one e.g.:dict(car="vehicle", truck="vehicle")
. Defaults to None.
- field default_class_id: int | None = None#
The default
class_id
to use if class cannot be inferred using other mechanisms. If a feature has an inferredclass_id
ofNone
, then it will be deleted. Defaults toNone
.
- build(class_config: ClassConfig | None = None) ClassInferenceTransformer [source]#
Build an instance of the corresponding type of object using this config.
For example, BackendConfig will build a Backend object. The arguments to this method will vary depending on the type of Config.
- Parameters:
class_config (ClassConfig | None) –
- Return type:
- classmethod deserialize(inp: str | dict | Config) Self #
Deserialize Config from a JSON file or dict, upgrading if possible.
If
inp
is already aConfig
, it is returned as is.
- classmethod from_dict(cfg_dict: dict) Self #
Deserialize Config from a dict.
- Parameters:
cfg_dict (dict) – Dict to deserialize.
- Return type:
Self
- classmethod from_file(uri: str) Self #
Deserialize Config from a JSON file, upgrading if possible.
- Parameters:
uri (str) – URI to load from.
- Return type:
Self
- recursive_validate_config()#
Recursively validate hierarchies of Configs.
This uses reflection to call validate_config on a hierarchy of Configs using a depth-first pre-order traversal.
- revalidate()#
Re-validate an instantiated Config.
Runs all Pydantic validators plus self.validate_config().
- to_file(uri: str, with_rv_metadata: bool = True) None #
Save a Config to a JSON file, optionally with RV metadata.
- update(pipeline: RVPipelineConfig | None = None, scene: SceneConfig | None = None) None #
Update any fields before validation.
Subclasses should override this to provide complex default behavior, for example, setting default values as a function of the values of other fields. The arguments to this method will vary depending on the type of Config.
- Parameters:
pipeline (RVPipelineConfig | None) –
scene (SceneConfig | None) –
- Return type:
None
- validate_config()#
Validate fields that should be checked after update is called.
This is to complement the builtin validation that Pydantic performs at the time of object construction.