ObjectDetectionEvaluation#

class ObjectDetectionEvaluation[source]#

Bases: ClassificationEvaluation

__init__(class_config: ClassConfig, iou_thresh: float = 0.5)[source]#
Parameters:

Methods

__init__(class_config[, iou_thresh])

compute(ground_truth_labels, prediction_labels)

Compute metrics for a single scene.

compute_avg()

Compute average metrics over all classes.

compute_eval_items(gt_labels, pred_labels, ...)

merge(other[, scene_id])

Merge Evaluation for another Scene into this one.

reset()

Reset the Evaluation.

save(output_uri)

Save this Evaluation to a file.

to_json()

Serialize to a dict or list.

__init__(class_config: ClassConfig, iou_thresh: float = 0.5)[source]#
Parameters:
compute(ground_truth_labels: ObjectDetectionLabels, prediction_labels: ObjectDetectionLabels)[source]#

Compute metrics for a single scene.

Parameters:
compute_avg() None#

Compute average metrics over all classes.

Return type:

None

static compute_eval_items(gt_labels: ObjectDetectionLabels, pred_labels: ObjectDetectionLabels, class_config: ClassConfig, iou_thresh: float = 0.5) dict[int, rastervision.core.evaluation.class_evaluation_item.ClassEvaluationItem][source]#
Parameters:
Return type:

dict[int, rastervision.core.evaluation.class_evaluation_item.ClassEvaluationItem]

merge(other: ClassificationEvaluation, scene_id: str | None = None) None#

Merge Evaluation for another Scene into this one.

This is useful for computing the average metrics of a set of scenes. The results of the averaging are stored in this Evaluation.

Parameters:
  • other (ClassificationEvaluation) – Evaluation to merge into this one

  • scene_id (str | None) – ID of scene. If specified, (a copy of) other will be saved and be available in to_json()’s output. Defaults to None.

Return type:

None

reset()#

Reset the Evaluation.

save(output_uri: str) None#

Save this Evaluation to a file.

Parameters:

output_uri (str) – string URI for the file to write.

Return type:

None

to_json() dict | list#

Serialize to a dict or list.

Returns:

Class-wise and (if available) scene-wise evaluations.

Return type:

dict | list