RasterStats#
- class RasterStats[source]#
Bases:
object
Band-wise means and standard deviations.
Attributes
Channel variances, if self.stds is set.
- __init__(means: Optional[Sequence[float]] = None, stds: Optional[Sequence[float]] = None, counts: Optional[Sequence[float]] = None)[source]#
Constructor.
Methods
__init__
([means, stds, counts])Constructor.
compute
(raster_sources[, sample_prob, ...])Compute the mean and stds over all the raster_sources.
compute_from_chips
(chips[, running_mean, ...])Compute running mean and var from chips in stream.
compute_from_pixels
(pixels[, running_mean, ...])Update running mean and var from pixel values.
load
(stats_uri)Load stats from file.
save
(stats_uri)Save stats to file.
to_dict
()- __init__(means: Optional[Sequence[float]] = None, stds: Optional[Sequence[float]] = None, counts: Optional[Sequence[float]] = None)[source]#
Constructor.
- compute(raster_sources: Sequence[RasterSource], sample_prob: float | None = None, chip_sz: int = 300, stride: int | None = None, nodata_value: float | None = 0) None [source]#
Compute the mean and stds over all the raster_sources.
This ignores NODATA values if nodata_value is not None.
If sample_prob is set, then a subset of each scene is used to compute stats which speeds up the computation. Roughly speaking, if sample_prob=0.5, then half the pixels in the scene will be used. More precisely, the number of chips is equal to sample_prob * (width * height / 300^2), or 1, whichever is greater. Each chip is uniformly sampled from the scene with replacement. Otherwise, it uses a sliding window over the entire scene to compute stats.
- Parameters
- Return type
None
- compute_from_chips(chips: Iterable[ndarray], running_mean: numpy.ndarray | None = None, running_var: numpy.ndarray | None = None, running_count: numpy.ndarray | None = None) tuple[None, None, None] | tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray] [source]#
Compute running mean and var from chips in stream.
- Parameters
running_mean (numpy.ndarray | None) –
running_var (numpy.ndarray | None) –
running_count (numpy.ndarray | None) –
- Return type
tuple[None, None, None] | tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray]
- compute_from_pixels(pixels: ndarray, running_mean: numpy.ndarray | None = None, running_var: numpy.ndarray | None = None, running_count: numpy.ndarray | None = None) tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray] [source]#
Update running mean and var from pixel values.
- Parameters
pixels (ndarray) –
running_mean (numpy.ndarray | None) –
running_var (numpy.ndarray | None) –
running_count (numpy.ndarray | None) –
- Return type
- classmethod load(stats_uri: str) Self [source]#
Load stats from file.
- Parameters
stats_uri (str) –
- Return type
Self
- save(stats_uri: str) None [source]#
Save stats to file.
- Parameters
stats_uri (str) –
- Return type
None
- property vars: numpy.ndarray | None#
Channel variances, if self.stds is set.