ClassificationSlidingWindowGeoDataset#
- class ClassificationSlidingWindowGeoDataset[source]#
Bases:
SlidingWindowGeoDataset
- __init__(*args, **kwargs)[source]#
Constructor.
- Parameters:
object. (scene A Scene) –
size – Window size.
stride – Step size between windows.
to (out_size Resize chips to this size before returning. Defaults) –
None
.padding – How many pixels the windows are allowed to overflow the sides of the raster source. If
None
, will be automatically calculated such that the windows cover the entire extent. Defaults toNone
.pad_direction – If
'end'
, only pad ymax and xmax (bottom and right). If'start'
, only pad ymin and xmin (top and left). If'both'
, pad all sides. If'both'
pad all sides. Has no effect if padding is zero. Defaults to'end'
.AOI (within_aoi If True and if the scene has an) – windows that lie fully within the AOI. If False, windows only partially intersecting the AOI will also be allowed. Defaults to
True
.sample (only) – windows that lie fully within the AOI. If False, windows only partially intersecting the AOI will also be allowed. Defaults to
True
.transform – Albumentations transform to apply to the windows. Defaults to
None
. Each transform in Albumentations takes images of type uint8, and sometimes other data types. The data type requirements can be seen at https://albumentations.ai/docs/api_reference/augmentations/transforms/ # noqa If there is a mismatch between the data type of imagery and the transform requirements, a RasterTransformer should be set on the RasterSource that converts to uint8, such asMinMaxTransformer
orStatsTransformer
.transform_type – Type of transform. Defaults to
None
.normalize – If
True
, the sampled chips are normalized to [0, 1] based on their data type. Defaults toTrue
.to_pytorch – If
True
, the sampled chips and labels are converted to pytorch tensors. Defaults toTrue
.return_window – Make
__getitem__
return the window coordinates used to generate the image. Defaults toFalse
.
Methods
__init__
(*args, **kwargs)Constructor.
append_resize_transform
(transform, out_size)Get transform to use for resizing windows to out_size.
from_uris
(image_uri[, label_vector_uri, ...])Create an instance of this class from image and label URIs.
Pre-compute windows.
- __add__(other: Dataset[T_co]) ConcatDataset[T_co] #
- Parameters:
other (Dataset[T_co]) –
- Return type:
ConcatDataset[T_co]
- __init__(*args, **kwargs)[source]#
Constructor.
- Parameters:
object. (scene A Scene) –
size – Window size.
stride – Step size between windows.
to (out_size Resize chips to this size before returning. Defaults) –
None
.padding – How many pixels the windows are allowed to overflow the sides of the raster source. If
None
, will be automatically calculated such that the windows cover the entire extent. Defaults toNone
.pad_direction – If
'end'
, only pad ymax and xmax (bottom and right). If'start'
, only pad ymin and xmin (top and left). If'both'
, pad all sides. If'both'
pad all sides. Has no effect if padding is zero. Defaults to'end'
.AOI (within_aoi If True and if the scene has an) – windows that lie fully within the AOI. If False, windows only partially intersecting the AOI will also be allowed. Defaults to
True
.sample (only) – windows that lie fully within the AOI. If False, windows only partially intersecting the AOI will also be allowed. Defaults to
True
.transform – Albumentations transform to apply to the windows. Defaults to
None
. Each transform in Albumentations takes images of type uint8, and sometimes other data types. The data type requirements can be seen at https://albumentations.ai/docs/api_reference/augmentations/transforms/ # noqa If there is a mismatch between the data type of imagery and the transform requirements, a RasterTransformer should be set on the RasterSource that converts to uint8, such asMinMaxTransformer
orStatsTransformer
.transform_type – Type of transform. Defaults to
None
.normalize – If
True
, the sampled chips are normalized to [0, 1] based on their data type. Defaults toTrue
.to_pytorch – If
True
, the sampled chips and labels are converted to pytorch tensors. Defaults toTrue
.return_window – Make
__getitem__
return the window coordinates used to generate the image. Defaults toFalse
.
- append_resize_transform(transform: albumentations.core.transforms_interface.BasicTransform | None, out_size: tuple[int, int]) albumentations.augmentations.geometric.resize.Resize | albumentations.core.composition.Compose #
Get transform to use for resizing windows to out_size.
- classmethod from_uris(image_uri: str | list[str], label_vector_uri: str | None = None, class_config: ClassConfig | None = None, aoi_uri: str | list[str] = [], label_vector_default_class_id: int | None = None, image_raster_source_kw: dict = {}, label_vector_source_kw: dict = {}, label_source_kw: dict = {}, **kwargs)#
Create an instance of this class from image and label URIs.
This is a convenience method. For more fine-grained control, it is recommended to use the default constructor.
- Parameters:
class_config (ClassConfig | None) – The
ClassConfig
.image_uri (str | list[str]) – URI or list of URIs of GeoTIFFs to use as the source of image data.
label_vector_uri (str | None) – URI of GeoJSON file to use as the source of segmentation label data. Defaults to
None
.class_config – The
ClassConfig
. Can beNone
if not using any labels.aoi_uri (str | list[str]) – URI or list of URIs of GeoJSONs that specify the area-of-interest. If provided, the dataset will only access data from this area. Defaults to
[]
.label_vector_default_class_id (int | None) – If using
label_vector_uri
and all polygons in that file belong to the same class and they do not contain a class_id property, then use this argument to map all of the polygons to the appropriate class ID. See docs forClassInferenceTransformer
for more details. Defaults toNone
.image_raster_source_kw (dict) – Additional arguments to pass to the RasterioSource used for image data. See docs for RasterioSource for more details. Defaults to
{}
.label_vector_source_kw (dict) – Additional arguments to pass to the
GeoJSONVectorSourceConfig
used for label data, iflabel_vector_uri
is set. See docs forGeoJSONVectorSourceConfig
for more details. Defaults to{}
.label_source_kw (dict) – Additional arguments to pass to the
ChipClassificationLabelSourceConfig
used for label data, iflabel_vector_uri
is set. See docs forChipClassificationLabelSourceConfig
for more details. Defaults to{}
.**kwargs – All other keyword args are passed to the default constructor for this class.
- Returns:
An instance of this GeoDataset subclass.