Source code for rastervision.pytorch_learner.dataset.semantic_segmentation_dataset

from typing import TYPE_CHECKING
from pathlib import Path
import logging

import numpy as np
from torch.utils.data import Dataset

from rastervision.pytorch_learner.dataset import (
    ImageDataset, TransformType, SlidingWindowGeoDataset,
    RandomWindowGeoDataset, load_image, discover_images, ImageDatasetError)
from rastervision.core.data.utils import make_ss_scene

if TYPE_CHECKING:
    from rastervision.core.data import ClassConfig

log = logging.getLogger(__name__)


[docs]class SemanticSegmentationDataReader(Dataset): """Reads semantic segmentatioin images and labels from files."""
[docs] def __init__(self, img_dir: str, label_dir: str): """Constructor. Args: img_dir (str): Directory containing images. label_dir (str): Directory containing segmentation masks. """ self.img_dir = Path(img_dir) self.label_dir = Path(label_dir) # collect image and label paths, match them based on filename img_paths = discover_images(img_dir) label_paths = discover_images(label_dir) self.img_paths = sorted(img_paths, key=lambda p: p.stem) self.label_paths = sorted(label_paths, key=lambda p: p.stem) self.validate_paths()
[docs] def validate_paths(self) -> None: if len(self.img_paths) != len(self.label_paths): raise ImageDatasetError( 'There should be a label file for every image file. ' f'Found {len(self.img_paths)} image files and ' f'{len(self.label_paths)} label files.') for img_path, label_path in zip(self.img_paths, self.label_paths): if img_path.stem != label_path.stem: raise ImageDatasetError( f'Name mismatch between image file {img_path.stem} ' f'and label file {label_path.stem}.')
[docs] def __getitem__(self, ind: int) -> tuple[np.ndarray, np.ndarray]: img_path = self.img_paths[ind] label_path = self.label_paths[ind] x = load_image(img_path) y = load_image(label_path).squeeze() return x, y
def __len__(self): return len(self.img_paths)
[docs]class SemanticSegmentationImageDataset(ImageDataset): """Reads semantic segmentatioin images and labels from files. Uses :class:`.SemanticSegmentationDataReader` to read the data. """
[docs] def __init__(self, img_dir: str, label_dir: str, *args, **kwargs): """Constructor. Args: img_dir (str): Directory containing images. label_dir (str): Directory containing segmentation masks. *args: See :meth:`.ImageDataset.__init__`. **kwargs: See :meth:`.ImageDataset.__init__`. """ ds = SemanticSegmentationDataReader(img_dir, label_dir) super().__init__( ds, *args, **kwargs, transform_type=TransformType.semantic_segmentation)
[docs]def make_ss_geodataset(cls, image_uri: str | list[str], label_raster_uri: str | list[str] | None = None, label_vector_uri: str | None = None, class_config: 'ClassConfig | None' = None, aoi_uri: str | list[str] = [], label_vector_default_class_id: int | None = None, image_raster_source_kw: dict = {}, label_raster_source_kw: dict = {}, label_vector_source_kw: dict = {}, **kwargs): """Create an instance of this class from image and label URIs. This is a convenience method. For more fine-grained control, it is recommended to use the default constructor. Args: image_uri: URI or list of URIs of GeoTIFFs to use as the source of image data. label_raster_uri: URI or list of URIs of GeoTIFFs to use as the source of segmentation label data. If the labels are in the form of GeoJSONs, use ``label_vector_uri`` instead. Defaults to ``None``. label_vector_uri: URI of GeoJSON file to use as the source of segmentation label data. If the labels are in the form of GeoTIFFs, use ``label_raster_uri`` instead. Defaults to ``None``. class_config: The ``ClassConfig``. Can be ``None`` if not using any labels. aoi_uri: URI or list of URIs of GeoJSONs that specify the area-of-interest. If provided, the dataset will only access data from this area. Defaults to ``[]``. label_vector_default_class_id: If using ``label_vector_uri`` and all polygons in that file belong to the same class and they do not contain a ``class_id`` property, then use this argument to map all of the polygons to the appropriate class ID. See docs for :class:`.ClassInferenceTransformer` for more details. Defaults to ``None``. image_raster_source_kw: Additional arguments to pass to the :class:`.RasterioSource` used for image data. See docs for :class:`.RasterioSource` for more details. Defaults to ``{}``. label_raster_source_kw: Additional arguments to pass to the :class:`.RasterioSource` used for label data, if ``label_raster_uri`` is used. See docs for :class:`.RasterioSource` for more details. Defaults to ``{}``. label_vector_source_kw: Additional arguments to pass to the :class:`.GeoJSONVectorSource` used for label data, if ``label_vector_uri`` is used. See docs for :class:`.GeoJSONVectorSource` for more details. Defaults to ``{}``. **kwargs: All other keyword args are passed to the default constructor for this class. Raises: ValueError: If both label_raster_uri and label_vector_uri are specified. Returns: An instance of this GeoDataset subclass. """ scene = make_ss_scene( image_uri=image_uri, label_raster_uri=label_raster_uri, label_vector_uri=label_vector_uri, class_config=class_config, aoi_uri=aoi_uri, label_vector_default_class_id=label_vector_default_class_id, image_raster_source_kw=image_raster_source_kw, label_raster_source_kw=label_raster_source_kw, label_vector_source_kw=label_vector_source_kw) ds = cls(scene, **kwargs) return ds
[docs]class SemanticSegmentationSlidingWindowGeoDataset(SlidingWindowGeoDataset): from_uris = classmethod(make_ss_geodataset)
[docs] def __init__(self, *args, **kwargs): super().__init__( *args, **kwargs, transform_type=TransformType.semantic_segmentation)
[docs]class SemanticSegmentationRandomWindowGeoDataset(RandomWindowGeoDataset): from_uris = classmethod(make_ss_geodataset)
[docs] def __init__(self, *args, **kwargs): super().__init__( *args, **kwargs, transform_type=TransformType.semantic_segmentation)