Source code for rastervision.pytorch_learner.classification_learner_config

from typing import TYPE_CHECKING, Iterable
from collections.abc import Callable
from enum import Enum
import logging

import albumentations as A
from torch import nn

from rastervision.core.data import Scene
from rastervision.core.rv_pipeline import WindowSamplingMethod
from rastervision.pipeline.config import (Config, register_config, ConfigError)
from rastervision.pytorch_learner.learner_config import (
    LearnerConfig, ModelConfig, ImageDataConfig, GeoDataConfig)
from rastervision.pytorch_learner.dataset import (
    ClassificationImageDataset, ClassificationSlidingWindowGeoDataset,
    ClassificationRandomWindowGeoDataset)
from rastervision.pytorch_learner.utils import adjust_conv_channels

if TYPE_CHECKING:
    from rastervision.core.data import SceneConfig

log = logging.getLogger(__name__)


[docs]class ClassificationDataFormat(Enum): image_folder = 'image_folder'
def clf_data_config_upgrader(cfg_dict, version): if version == 1: cfg_dict['type_hint'] = 'classification_image_data' return cfg_dict
[docs]@register_config('classification_data', upgrader=clf_data_config_upgrader) class ClassificationDataConfig(Config): pass
[docs]@register_config('classification_image_data') class ClassificationImageDataConfig(ClassificationDataConfig, ImageDataConfig): """Configure :class:`ClassificationImageDatasets <.ClassificationImageDataset>`.""" data_format: ClassificationDataFormat = ClassificationDataFormat.image_folder
[docs] def dir_to_dataset(self, data_dir: str, transform: A.BasicTransform ) -> ClassificationImageDataset: ds = ClassificationImageDataset( data_dir, class_names=self.class_names, transform=transform) return ds
[docs]@register_config('classification_geo_data') class ClassificationGeoDataConfig(ClassificationDataConfig, GeoDataConfig): """Configure classification :class:`GeoDatasets <.GeoDataset>`. See :mod:`rastervision.pytorch_learner.dataset.classification_dataset`. """
[docs] def build_scenes(self, scene_configs: Iterable['SceneConfig'], tmp_dir: str | None = None): for s in scene_configs: if s.label_source is not None: s.label_source.lazy = True return super().build_scenes(scene_configs, tmp_dir=tmp_dir)
[docs] def scene_to_dataset( self, scene: Scene, transform: A.BasicTransform | None = None, for_chipping: bool = False ) -> ClassificationSlidingWindowGeoDataset | ClassificationRandomWindowGeoDataset: if isinstance(self.sampling, dict): opts = self.sampling[scene.id] else: opts = self.sampling extra_args = {} if for_chipping: extra_args = dict( normalize=False, to_pytorch=False, return_window=True) if opts.method == WindowSamplingMethod.sliding: ds = ClassificationSlidingWindowGeoDataset( scene, size=opts.size, stride=opts.stride, padding=opts.padding, pad_direction=opts.pad_direction, within_aoi=opts.within_aoi, transform=transform, **extra_args, ) elif opts.method == WindowSamplingMethod.random: ds = ClassificationRandomWindowGeoDataset( scene, size_lims=opts.size_lims, h_lims=opts.h_lims, w_lims=opts.w_lims, out_size=opts.size, padding=opts.padding, max_windows=opts.max_windows, max_sample_attempts=opts.max_sample_attempts, efficient_aoi_sampling=opts.efficient_aoi_sampling, within_aoi=opts.within_aoi, transform=transform, **extra_args, ) else: raise NotImplementedError() return ds
[docs]@register_config('classification_model') class ClassificationModelConfig(ModelConfig): """Configure a classification model."""
[docs] def build_default_model(self, num_classes: int, in_channels: int) -> nn.Module: from torchvision import models backbone_name = self.get_backbone_str() pretrained = self.pretrained weights = 'DEFAULT' if pretrained else None model_factory_func: Callable[..., nn.Module] = getattr( models, backbone_name) model = model_factory_func(weights=weights, **self.extra_args) if in_channels != 3: if not backbone_name.startswith('resnet'): raise ConfigError( 'All TorchVision backbones do not provide the same API ' 'for accessing the first conv layer. ' 'Therefore, conv layer modification to support ' 'arbitrary input channels is only supported for resnet ' 'backbones. To use other backbones, it is recommended to ' 'fork the TorchVision repo, define factory functions or ' 'subclasses that perform the necessary modifications, and ' 'then use the external model functionality to import it ' 'into Raster Vision. See spacenet_rio.py for an example ' 'of how to import external models. Alternatively, you can ' 'override this function.') model.conv1 = adjust_conv_channels( old_conv=model.conv1, in_channels=in_channels, pretrained=pretrained) in_features = model.fc.in_features model.fc = nn.Linear(in_features, num_classes) return model
[docs]@register_config('classification_learner') class ClassificationLearnerConfig(LearnerConfig): """Configure a :class:`.ClassificationLearner`.""" model: ClassificationModelConfig | None = None
[docs] def build(self, tmp_dir=None, model_weights_path=None, model_def_path=None, loss_def_path=None, training=True): from rastervision.pytorch_learner.classification_learner import ( ClassificationLearner) return ClassificationLearner( self, tmp_dir=tmp_dir, model_weights_path=model_weights_path, model_def_path=model_def_path, loss_def_path=loss_def_path, training=training)