Source code for rastervision.pytorch_learner.semantic_segmentation_learner_config

from collections.abc import Callable
from os.path import join
from enum import Enum
import logging

import albumentations as A
from torch import nn
from torch.utils.data import Dataset
from torchvision import models

from rastervision.core.data import Scene
from rastervision.core.rv_pipeline import WindowSamplingMethod
from rastervision.pipeline.config import (Config, register_config, Field,
                                          field_validator, ConfigError)
from rastervision.pytorch_learner.learner_config import (
    Backbone, LearnerConfig, ModelConfig, ImageDataConfig, GeoDataConfig)
from rastervision.pytorch_learner.dataset import (
    SemanticSegmentationImageDataset,
    SemanticSegmentationSlidingWindowGeoDataset,
    SemanticSegmentationRandomWindowGeoDataset)
from rastervision.pytorch_learner.utils import adjust_conv_channels

log = logging.getLogger(__name__)


[docs]class SemanticSegmentationDataFormat(Enum): default = 'default'
def ss_data_config_upgrader(cfg_dict: dict, version: int) -> dict: if version < 2: cfg_dict['type_hint'] = 'semantic_segmentation_image_data' elif version < 3: try: # removed in version 3 del cfg_dict['channel_display_groups'] except KeyError: pass return cfg_dict def ss_image_data_config_upgrader(cfg_dict: dict, version: int) -> dict: if version < 3: try: # removed in version 3 del cfg_dict['img_format'] del cfg_dict['label_format'] del cfg_dict['channel_display_groups'] except KeyError: pass return cfg_dict
[docs]@register_config( 'semantic_segmentation_data', upgrader=ss_data_config_upgrader) class SemanticSegmentationDataConfig(Config): pass
[docs]@register_config( 'semantic_segmentation_image_data', upgrader=ss_image_data_config_upgrader) class SemanticSegmentationImageDataConfig(SemanticSegmentationDataConfig, ImageDataConfig): """Configure :class:`SemanticSegmentationImageDatasets <.SemanticSegmentationImageDataset>`. This assumes the following file structure: .. code-block:: text <data_dir>/ img/ <img 1>.<extension> <img 2>.<extension> ... <img N>.<extension> labels/ <img 1>.<extension> <img 2>.<extension> ... <img N>.<extension> """ # noqa data_format: SemanticSegmentationDataFormat = ( SemanticSegmentationDataFormat.default)
[docs] def update(self, *args, **kwargs): SemanticSegmentationDataConfig.update(self) ImageDataConfig.update(self, *args, **kwargs)
[docs] def dir_to_dataset(self, data_dir: str, transform: A.BasicTransform) -> Dataset: if self.data_format != SemanticSegmentationDataFormat.default: raise NotImplementedError() img_dir = join(data_dir, 'img') label_dir = join(data_dir, 'labels') ds = SemanticSegmentationImageDataset( img_dir=img_dir, label_dir=label_dir, transform=transform) return ds
[docs]@register_config('semantic_segmentation_geo_data') class SemanticSegmentationGeoDataConfig(SemanticSegmentationDataConfig, GeoDataConfig): """Configure semantic segmentation :class:`GeoDatasets <.GeoDataset>`. See :mod:`rastervision.pytorch_learner.dataset.semantic_segmentation_dataset`. """
[docs] def update(self, *args, **kwargs): SemanticSegmentationDataConfig.update(self) GeoDataConfig.update(self, *args, **kwargs)
[docs] def scene_to_dataset(self, scene: Scene, transform: A.BasicTransform | None = None, for_chipping: bool = False) -> Dataset: if isinstance(self.sampling, dict): opts = self.sampling[scene.id] else: opts = self.sampling extra_args = {} if for_chipping: extra_args = dict( normalize=False, to_pytorch=False, return_window=True) if opts.method == WindowSamplingMethod.sliding: ds = SemanticSegmentationSlidingWindowGeoDataset( scene, size=opts.size, stride=opts.stride, padding=opts.padding, pad_direction=opts.pad_direction, within_aoi=opts.within_aoi, transform=transform, **extra_args, ) elif opts.method == WindowSamplingMethod.random: ds = SemanticSegmentationRandomWindowGeoDataset( scene, size_lims=opts.size_lims, h_lims=opts.h_lims, w_lims=opts.w_lims, out_size=opts.size, padding=opts.padding, max_windows=opts.max_windows, max_sample_attempts=opts.max_sample_attempts, efficient_aoi_sampling=opts.efficient_aoi_sampling, within_aoi=opts.within_aoi, transform=transform, **extra_args, ) else: raise NotImplementedError() return ds
[docs]@register_config('semantic_segmentation_model') class SemanticSegmentationModelConfig(ModelConfig): """Configure a semantic segmentation model.""" backbone: Backbone = Field( Backbone.resnet50, description='The torchvision.models backbone to use. Currently, only ' 'resnet50 and resnet101 are supported.')
[docs] @field_validator('backbone') @classmethod def only_valid_backbones(cls, v): if v not in [Backbone.resnet50, Backbone.resnet101]: raise ValueError( 'The only valid backbones for DeepLabv3 are resnet50 ' 'and resnet101.') return v
[docs] def build_default_model(self, num_classes: int, in_channels: int) -> nn.Module: backbone_name = self.get_backbone_str() pretrained = self.pretrained weights = 'DEFAULT' if pretrained else None model_factory_func: Callable[..., nn.Module] = getattr( models.segmentation, f'deeplabv3_{backbone_name}') model = model_factory_func( num_classes=num_classes, weights_backbone=weights, aux_loss=False, **self.extra_args) if in_channels != 3: if not backbone_name.startswith('resnet'): raise ConfigError( 'All TorchVision backbones do not provide the same API ' 'for accessing the first conv layer. ' 'Therefore, conv layer modification to support ' 'arbitrary input channels is only supported for resnet ' 'backbones. To use other backbones, it is recommended to ' 'fork the TorchVision repo, define factory functions or ' 'subclasses that perform the necessary modifications, and ' 'then use the external model functionality to import it ' 'into Raster Vision. See isprs_potsdam.py for an example ' 'of how to import external models. Alternatively, you can ' 'override this function.') model.backbone.conv1 = adjust_conv_channels( old_conv=model.backbone.conv1, in_channels=in_channels, pretrained=pretrained) return model
[docs]@register_config('semantic_segmentation_learner') class SemanticSegmentationLearnerConfig(LearnerConfig): """Configure a :class:`.SemanticSegmentationLearner`.""" model: SemanticSegmentationModelConfig | None = None
[docs] def build(self, tmp_dir=None, model_weights_path=None, model_def_path=None, loss_def_path=None, training=True): from rastervision.pytorch_learner.semantic_segmentation_learner import ( SemanticSegmentationLearner) return SemanticSegmentationLearner( self, tmp_dir=tmp_dir, model_weights_path=model_weights_path, model_def_path=model_def_path, loss_def_path=loss_def_path, training=training)